Watznaueria barnesiae


Classification: Mesozoic -> Watznaueriales -> Watznaueriaceae -> Watznaueria -> Watznaueria barnesiae
Sister taxa: W. barnesiae, W. bayackii, W. fossacincta, W. manivitiae, W. ovata ⟩⟨ W. britannica, W. reinhardtii ⟩⟨ W. biporta, W. cynthae ⟩⟨ W. contracta, W. okadai, W. quadriradiata ⟩⟨ W. fasciata, W. rawsonii, C. baticlypeata, W. sp.

Distinguishing features: Central-area closed or very narrow, with no central area structures.


Taxonomy:

Citation: Watznaueria barnesiae (Black in Black & Barnes, 1959) Perch-Nielsen, 1968
Rank: Species
Basionym: Tremalithus barnesiae Black in Black & Barnes, 1959
Synonyms:

Farinacci & Howe catalog pages: T. barnesae * , A. deflandrei * , C. perstrata * , C. formosus * , C. elongatus * , C. bidentatus * , C. bornholmensis * , C. coronatus * , C. hoellvikensis * , C. paenepelagicus * , C. perforatus * , E. arata * , E. forbesii * , M. manivitae * , W. angustoralis * , W. coronata + * , W. praerupta *

Distinguishing features: Central-area closed or very narrow, with no central area structures.


Morphology: In XPL the extinction gyres meet in the centre of the coccolith, forming a swastika-like extinction pattern, and do not separate on rotation.
Gollain et al. (2019) describe size varation in W. barnesiae during the Cretaceuos, with detailed data for the Valanginian - with a size range inthe Valnginian of 3-7µm and no evidnce of polymodality.

Search data:
TagsLITHS: placolith, elliptical, CA: ca_conjunct, closed,
CSPH: equant, monomorphic, CROSS-POLARS: rim-unicyclic, R-prominent,
MetricsLith size: 4->8µm;
Data source notes: Gollain et al. (2019) & illustrated specimens
The morphological data given here can be used on the advanced search page. See also these notes

Geological Range:
Last occurrence (top): at top of Maastrichtian Stage (100% up, 66Ma, in Maastrichtian stage). Data source: Lees & Bown 2005 - consistently present to end Cret
First occurrence (base): at base of NJT11 subzone (0% up, 168.2Ma, in Bathonian stage). Data source: Mattioli & Erba 1999, fig. 12 - zonal marker (Bown & Cooper 1998 record the FAD significantly lower, in NJ9)

Plot of occurrence data:

References:

Black, M. & Barnes, B. (1959). The structure of Coccoliths from the English Chalk. Geological Magazine. 96(5): 321-328. gs

Black, M. (1971a). Coccoliths of the Speeton Clay and Sutterby Marl. Proceedings of the Yorkshire Geological Society. 38: 381-424. gs

Black, M. (1973). British Lower Cretaceous Coccoliths. I-Gault Clay (Part 2). Palaeontographical Society Monograph. 127: 49-112. gs

Bown, P. R. & Cooper, M. K. E. (1998). Jurassic. In, Bown, P. R. (ed.) Calcareous Nannofossil Biostratigraphy. British Micropalaeontological Society Publication Series. 34-85. gs

Bown, P. R., Rutledge, D. C., Crux, J. A. & Gallagher, L. T. (1998). Early Cretaceous. In, Bown, P. R. (ed.) Calcareous Nannofossil Biostratigraphy. British Micropalaeontological Society Publication Series. 86-131. gs

Bown, P. R., Gibbs, S. J., Sheward, R., O’Dea, S. & Higgins, D. (2014). Searching for cells: the potential of fossil coccospheres in coccolithophore research. Journal of Nannoplankton Research. 34(special): 5-21. gs V O

Bukry, D. (1969). Upper Cretaceous coccoliths from Texas and Europe. University of Kansas Paleontological Contributions, Articles. 51 (Protista 2): 1-79. gs V O

Burnett, J. A. (1998). Upper Cretaceous. In, Bown, P. R. (ed.) Calcareous Nannofossil Biostratigraphy. British Micropalaeontological Society Publication Series. 132-199. gs V O

Cepek, P. (1978). Mesozoic calcareous nannoplankton of the Eastern North Atlantic, Leg 41. Initial Reports of the Deep Sea Drilling Project. 41: 667-687. gs V O

Crux, J. A. (1980). A biostratigraphical study of Upper Cretaceous nannofossils from South-east England and North France. PhD thesis, University College London. -. gs

Forchheimer, S. (1970). Scanning electron microscope studies of some Cenomanian coccospheres and coccoliths from Bornholm (Denmark) and Köpingsberg (Sweden). Sveriges Geologiska Undersokning, Arsbok. 64(4): 1-43. gs

Forchheimer, S. (1972). Scanning electron microscope studies of Cretaceous coccoliths from the Köpingsberg Borehole No. 1, SE Sweden. Sveriges Geologiska Undersökning, Series C. #668, 65: 1-141. gs

Gale, A. S., Kennedy, W. J., Burnett, J. A., Caron, M. & Kidd, B. E. (1996). The Late Albian to Early Cenomanian succession at Mont Risou, near Rosans (Drôme, SE France): an integrated study (ammonites, inoceramids, planktonic foraminifera, nannofossils, oxygen and carbon isotopes). Cretaceous Research. 17: 515-606. gs

Grün, W. & Allemann, F. (1975). The Lower Cretaceous of Caravaca (Spain): Berriasian Calcareous Nannoplankton of the Miravetes Section (Subbetic Zone, Prov. of Murcia). Eclogae Geologicae Helvetiae. 68: 147-211. gs V O

Hardas, P. & Mutterlose, J. (2008). Calcareous nannofossil assemblages of Oceanic Anoxic Event 2 in the equatorial Atlantic: Evidence of an eutrophication event. Marine Micropaleontology. 66: 52-69. gs

Hattner, J. G. & Wise, S. W. (1980). Upper Cretaceous calcareous nannofossil biostratigraphy of South Carolina. South Carolina Geology. 24: 41-117. gs

Lambert, B. (1993). Nannofossiles calcaires de l'Albien supérieur et du Vraconnien du Cameroun méridional (Deuxième Partie). Cahiers de Micropaléontologie. 8(2): 183-225. gs

Linnert, C., Mutterlose, J. & Erbacher, J. (2010). Calcareous nannofossils of the Cenomanian/Turonian boundary interval from the Boreal Realm (Wunstorf, northwest Germany). Marine Micropaleontology. 74: 38-58. gs

Mai, H. (2001). New coccolithophorid taxa fom the Guelhemmerberg airshaft. Lower Paleocene, The Netherlands. Micropaleontology. 47: 144-154. gs

Mattioli, E. & Erba, E. (1999). Synthesis of calcareous nannofossil events in Tethyan lower and middle Jurassic successions. Rivista Italiana di Paleontologia e Stratigrafia. 105(3): 343-376. gs V O

Medd, A. W. (1979). The Upper Jurassic coccoliths from the Haddenham and Gamlingay boreholes (Cambridgeshire, England). Eclogae Geologicae Helvetiae. 72: 19-109. gs V O

Mutterlose, J. & Wise, S. W. (1990). Lower Cretaceous nannofossil biostratigraphy of ODP Leg 113 Holes 692B and 693A, continental slope off east Antarctica, Weddell Sea. Proceedings of the Ocean Drilling Program, Scientific Results. 113: 325-351. gs V O

Noël, D. (1965b). Sur les Coccolithes du Jurassique Européen et d'Afrique du Nord. Éditions du Centre National de la Recherche Scientifique, Paris. 1-209. gs

Perch-Nielsen, K. (1968c). Der Feinbau und die Klassifikation der Coccolithen aus dem Maastrichtien von Danemark. Biologiske Skrifter, Kongelige Danske Videnskabernes Selskab. 16: 1-96. gs

Rahman, A. & Roth, P. H. (1991). Upper Jurassic calcareous nannofossils from the DSDP Site 534 in the Blake Bahama Basin, western North Atlantic. Eclogae Geologicae Helvetiae. 84: 765-789. gs V O

Thibault, N. (2010). Calcareous nannofossils from the boreal Upper Campanian- Maastrichtian chalk of Denmark. Journal of Nannoplankton Research. 31(1): 39-56. gs V O

Thierstein, H. R. (1974). Calcareous nannoplankton - Leg 26, Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project. 26: 619-667. gs V O

Wise, S. W. & Wind, F. H. (1977). Mesozoic and Cenozoic calcareous nannofossils recovered by DSDP Leg 36 drilling on the Falkland Plateau, south-west Atlantic sector of the Southern Ocean. Initial Reports of the Deep Sea Drilling Project. 36(269-491): -. gs V O

Wise, S. W. (1983). Mesozoic and Cenozoic calcareous nannofossils recovered by DSDP Leg 71 in the Falkland Plateau region, Southwest Atlantic Ocean. Initial Reports of the Deep Sea Drilling Project. 71: 481-550. gs V O

Young, J. R. (2010). Calcareous nannofossils. In, Young, J. R. , Gale, A. S. , Knight, R. & Smith, A. B. (eds) Fossil of the Gault Clay. Palaeontological Association 16-27. gs

Missing or ambiguous references: Gollain et al. 2019;


nannotaxlogo400px

Watznaueria barnesiae compiled by Jeremy R. Young, Paul R. Bown, Jacqueline A. Lees viewed: 22-10-2020

Taxon Search:
Advanced Search

Short stable page link: http://mikrotax.org/Nannotax3/index.php?id=11299 Go to Archive.is to create a permanent copy of this page - citation notes



Comments (2)

Sort By
Page 1 of 1
 
Gravatar
H K Sabot (AMD, India)
Why W barnesae has less abundance in Coniacian, although it being a resistant ? whether reproductivity is low or sea regressed at that time ?
Gravatar
Jeremy Young (UCL, UK)
There does seem to be a reduction in the frequency of W. barnesiae in the Coniacian but you should look at this as an indication that there may be something happening rather than definite proof, it may just be noise in the data. Interestingly though there is also an increase in the frequency records in W. biporta, W. communis and W. brittannica at this time - so one possibility is that forms with a bar replace W. barnesiae at this time in some environments. It could be interesting to try and follow this up.
Gravatar
Alessandro Menini (Univesité Claude Bernard Lyon, France)
Very nice job here. I was curious about the species of Zeugrhabdotus in pic JRYlm-Wb16.JPG. Which species is it ?
Gravatar
Jeremy Young (UCL, UK)
Thanks for the feedback, always appreciated. The image you mention is one I took a long time ago but i think from Early Maastrichtian or Late Campanian of Tunisia. Zeugrhadotus taxonomy is problematic but Z. sigmoides would be a normal identification fro this, and Jackie Lees conformed this. [
Page 1 of 1
 

Add Comment

* Required information
1000
Captcha Image
Powered by Commentics