Globigerinoides ruber


Classification: pf_cenozoic -> Globigerinidae -> Globigerinoides -> Globigerinoides ruber
Sister taxa: G. elongatus, G. extremus, G. conglobatus, G. eoconglobatus, G. obliquus, G. altiaperturus, G. joli, G. neoparawoodi, G. kennetti, G. bollii, G. italicus, G. ruber, G. mitra, G. seigliei, G. subquadratus, G. diminutus, G. bulloideus, G. sp.,

Taxonomy

Citation: Globigerinoides ruber (d’Orbigny, 1839)
Rank: species
Basionym: Globigerina rubra
Variants: Colour variants (chromotypes):
The name ruber is from the colour of the pink chromotype, the taxonomic significance of the colouration was long doubted but molecular genetic data has strongly supported separation of these two types as discrete species (Aurahs et al. 2011).
The pink form first occurs in the fossil record at ca 750ka and disappears from the Indian and Pacific Oceans at ca 120ka (Thompson et al. 1979).

Morphological variants:

Catalog entries: Globigerina rubra, Globigerina bulloides rubra pyramidalis, Globigerina cyclostoma

Type images:

Distinguishing features: 3 subspherical chambers in final whorl; primary and supplementary apertures, symmetrically placed above a suture.

NB These concise distinguishing features statements are used in the tables of daughter-taxa to act as quick summaries of the differences between e.g. species of one genus.
They are being edited as the site is developed and comments on them are especially welcome.

Description


Diagnostic characters: Low to high trochospiral, subspherical chambers

Aperture: Primary aperture interiomarginal umbilical wide arch with rim. Supplementary sutural apertures on spiral side [Aze 2011, based on Kennett & Srinivasan 1983]

Coiling direction (in extant population): mixed


Wall type: Spinose; Cancellate [Aze 2011]

Test morphology: Test medium, low to high trochospire with three subspherical chambers in the final whorl, increasing moderately in size; sutures radial, distinctly depressed; surface coarsely perforate; thin secondary calcite crusts surround the spine bases ; calcite crust developing between spine bases form a honeycomb-shaped surface (Pl. 10, Fig. 6); umbilicus narrow, primary aperture interiomarginal, umbilical with a wide-arched opening bordered by a rim, with two supplementary sutural apertures situated opposite sutures of earlier chambers. [Kennett & Srinivasan 1983]

Size: >250µm

Character matrix

test outline:Lobatechamber arrangement:Trochospiraledge view:Equally biconvexaperture:Umbilical
sp chamber shape:Globularcoiling axis:Moderate-highperiphery:N/Aaperture border:Thin lip
umb chbr shape:Globularumbilicus:Wideperiph margin shape:Broadly roundedaccessory apertures:Sutural
spiral sutures:Strongly depressedumb depth:Deepwall texture:Cancellateshell porosity:Macroperforate: >2.5µm
umbilical or test sutures:Strongly depressedfinal-whorl chambers:3.0-3.0 N.B. These characters are used for advanced search. N/A - not applicable

Biogeography and Palaeobiology


Geographic distribution: Warm to cool subtropical. [Kennett & Srinivasan 1983] Low latitudes [Aze et al. 2011, based on Kennett & Srinivasan (1983)]

In modern oceans an abundant, warm water, species [SCOR WG138]


Isotope paleobiology: Aze et al. 2011 ecogroup 1 - Open ocean mixed-layer tropical/subtropical, with symbionts. Based on very heavy ∂13C and relatively light ∂18O Cited sources (Aze et al. 2011 appendix S3): Keller (1985); Pearson et al. (2001b); Pearson & Shackleton (1995)

Phylogenetic relations:

Gs. ruber is easily distinguished by the position of the primary and supplementary sutural apertures, which are always symmetrically placed above the suture between two earlier chambers. During the Pleistocene to Recent, Gs. ruber shows a wide range of variation in the height of the spire and tightness of the test coiling. Several taxa have been recognized to reflect these variations - for instance, Gs. pyramidalis (van Den Broeck) for forms with a high trochospire, Gs. elongatus (d'Orbigny, 1826) for forms with tightly coiled trochospire , and Gs. cyclostomus (Galloway and Wissler, 1927) for forms with a more compact test and relatively small aperture. We consider all of these forms to be phenotypic variants of G. ruber. We believe that Gs. ruber evolved from Gs. subquadratus during the late Middle Miocene Zone N15. Instead, Blow (1969) suggested the ancestry of Gs. ruber to be from Gs. bolli within Zone N16 (Late Miocene), and Cordey (1967) suggested that Gs. obliquus was the ancestral form of Gs. ruber. [Kennett & Srinivasan 1983]

Molecular Genotypes recognised (data from PFR2 database, June 2017; References: Aurahs et al. 2009 Insights; Aurahs et al. 2009 ruber; Aurahs et al. 2011; Darling et al. 1997; Darling & Wade 2008; Ujiié & Lipps 2009; Seears et al. 2012). NB G. ruber IIa is now regarded as a separate species, G. elongatus, following Aurahs et al. (2011). Genotypes G. ruber Ia, Ib, Ib2 & IIb are all characteristic of G. ruber white (Aurahs et al. 2011).

Most likely ancestor: Globigerinoides subquadratus - at confidence level 3 (out of 5). Data source: Kennett & Srinivasan 1983, fig. 10.
Likely descendants: Globigerinoides seigliei;

Biostratigraphic distribution

Geological Range:
Last occurrence (top): Extant Data source: present in the plankton (SCOR WG138). NB The pink form is absent in the Pacific from 0.12Ma (Wade et al. 2011)
First occurrence (base): within N14 zone (10.46-11.63Ma, base in Serravallian stage). Data source: Chaisson & Pearson (1997)

Plot of occurrence data:

Primary source for this page: Kennett & Srinivasan 1983, p.78

References:

Aurahs, R., Grimm, G. W., Hemleben, V., Hemleben, C. & Kucera, M. (2009b). Geographical distribution of cryptic genetic types in the planktonic foraminifer Globigerinoides ruber. Mol. Ecol. 18: 1692-1706. gs

Aurahs, R., Treis, Y., Darling, K. & Kucera, M. (2011). A revised taxonomic and phylogenetic concept for the planktonic foraminifer species Globigerinoides ruber based on molecular and morphometric evidence. Marine Micropaleontology. 79: 1-14. gs

Aze, T. et al. (2011). A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biological Reviews. 86: 900-927. gs

Blow, W. H. (1969). Late middle Eocene to Recent planktonic foraminiferal biostratigraphy. In, Bronnimann, P. & Renz, H. H. (eds) Proceedings of the First International Conference on Planktonic Microfossils, Geneva, 1967. E J Brill, Leiden 380-381. gs

Cordey, W. G. (1967). The development of Globigerinoides ruber (D'Orbigny 1839) from the Miocene to Recent. Palaeontology. 10(4): 647-659. gs

d'Orbigny, A. (1826). Tableau methodique de la Classe de Cephalopodes. Annals des Sciences Naturelles, Paris. 7: 245-314. gs

d'Orbigny, A. (1839a). Foraminiferes. In, de la Sagra, R. (ed.) Histoire physique et naturelle de l'Ile de Cuba. A. Bertrand, Paris, France 1-224. gs

Darling, K. F. & Wade, C. M. (2008). The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes. Marine Micropaleontology. 67: 216-238. gs

Darling, K. F., Wade, C. M., Kroon, D. & Brown, A. J. L. (1997). Planktic foraminiferal molecular evolution and their polyphyletic origins from benthic taxa. Marine Micropaleontology. 30: 251-266. gs

Galloway, J. J. & Wissler, S. G. (1927). Pleistocene foraminifera from the Lomita Quarry, Palos Verdes Hills, California. Journal of Paleontology. 1(1): 35-87. gs

Keller, G. (1985). Depth stratification of planktonic foraminifers in the Miocene Ocean. In, Kennett, J. P. (ed.) The Miocene Ocean: Paleoceanography and Biogeography. GSA Memoir. 163: 1-337. gs

Kennett, J. P. & Srinivasan, M. S. (1983). Neogene Planktonic Foraminifera. Hutchinson Ross Publishing Co., Stroudsburg, Pennsylvania. 1-265. gs

Loeblich, A. & Tappan, H. (1994). Foraminifera of the Sahul shelf and Timor Sea. Cushman Foundation for Foraminiferal Research, Special Publication. 31: 1-661. gs

Norris, R. D. (1998). Planktonic foraminifer biostratigraphy: Eastern Equatorial Atlantic. Proceedings of the Ocean Drilling Program, Scientific Results. 159: 445-479. gs

Pearson, P. N. & Shackleton, N. J. (1995). Neogene multispecies planktonic foraminifer stable isotope record, Site 871, Limalok Guyot. Proceedings of the Ocean Drilling Program, Scientific Results. 401-410. gs

Pearson, P. N. et al. (2001a). Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature. 413: 481-487. gs

Postuma, J. A. (1971). Manual of planktonic foraminifera. Elsevier for Shell Group, The Hague. 1-406. gs

Seears, H. A., Darling, K. F. & Wade, C. M. (2012). Ecological partitioning and diversity in tropical planktonic foraminifera. BMC Evolutionary Biology. 12(54): 1-15. gs

Thompson, P. R., Be, A. W. H., Duplessy, J. C. & Shackleton, N. J. (1979). Disappearance of pink pigmented Globigerinoides ruber at 120, 000 yr BP in the Indian and Pacific Oceans. Nature. 280: 554-558. gs

Ujiié, Y. & Lipps, J. H. (2009). Cryptic diversity in planktonic foraminifera in the northwest Pacific ocean. Journal of Foraminiferal Research. 39: 145-154. gs


logo

Globigerinoides ruber compiled by the pforams@mikrotax project team viewed: 14-11-2019

Taxon Search:
Advanced Search

Short stable page link: http://mikrotax.org/pforams/index.php?id=104066 Go to Archive.is to create a permanent copy of this page - citation notes



Comments (0)

No comments yet. Be the first!

Add Comment

* Required information
1000
Captcha Image
Powered by Commentics