Globoconella inflata


Classification: pf_cenozoic -> Globorotaliidae -> Globoconella -> Globoconella inflata
Sister taxa: G. inflata, G. puncticulata, G. sphericomiozea, G. terminalis, G. pliozea, G. conomiozea, G. conoidea, G. miozea, G. panda, G. sp.,

Taxonomy

Citation: Globoconella inflata (d’Orbigny, 1839)
Rank: species
Basionym: Globigerina inflata d’Orbigny, 1839
Synonyms:
Variants:

Catalog entries: Globigerina inflata, Globorotalia inflata triangula, Globorotalia (Globoconella) conomiozea subconomiozea, Globorotalia oscitans

Type images:

Distinguishing features: Like Gr. (G.) puncticulata but <4 chambers in final whorl, greater test inflation, a broadly rounded periphery, and a larger, high-arched, aperture.

NB These concise distinguishing features statements are used in the tables of daughter-taxa to act as quick summaries of the differences between e.g. species of one genus.
They are being edited as the site is developed and comments on them are especially welcome.

Description


Diagnostic characters: Low trochospiral, globular, slightly umbilico-convex

Aperture: Interiomarginal umbilical-extraumbilical high arch with indistinct rim [Aze 2011, based on Kennett & Srinivasan 1983]

Coiling direction (in extant population): sinistral


Wall type: Non-spinose; Cancellate [Aze 2011]

Test morphology: Test low trochospiral, 3 to 3½ subglobular chambers in the final whorl, periphery broadly rounded, chambers more inflated on umbilical side than on spiral side, increasing uniformly in size as added; spiral sutures curved, depressed, on umbilical side almost radial, depressed; surface covered with low, rounded tubercles and smooth, thick cortex as in Pulleniatina; umbilicus narrow; aperture wide, high arch, interiomarginal, umbilical-extraumbilical with an indistinct rim. [Kennett & Srinivasan 1983]

Size: >250µm

Character matrix

test outline:Subquadratechamber arrangement:Trochospiraledge view:Planoconvexaperture:Umbilical-extraumbilical
sp chamber shape:Crescenticcoiling axis:Lowperiphery:N/Aaperture border:Thin lip
umb chbr shape:Subtriangularumbilicus:Narrowperiph margin shape:Broadly roundedaccessory apertures:None
spiral sutures:Flushumb depth:Shallowwall texture:Smoothshell porosity:Macroperforate: >2.5µm
umbilical or test sutures:Weakly depressedfinal-whorl chambers:3.0-3.5 N.B. These characters are used for advanced search. N/A - not applicable

Biogeography and Palaeobiology


Geographic distribution: Sub-antarctic to warm subtropical areas. [Kennett & Srinivasan 1983] Low to high latitudes [Aze et al. 2011, based on Kennett & Srinivasan (1983)]

In modern oceans an abundant, temperate water, species [SCOR WG138]


Isotope paleobiology: Aze et al. 2011 ecogroup 3 - Open ocean thermocline. Based on light ∂13C and relatively heavy ∂18O Cited sources (Aze et al. 2011 appendix S3): Vergnaud-Grazzini (1976)

Phylogenetic relations: Gr. (G.) inflata is distinguished from Gr. (G.) puncticulata by usually having 3 to 3½ chambers in the final whorl, greater test inflation, a broadly rounded periphery, and a large, high-arched aperture.
Gr. (G.) puncticulata evolved during the Late Pliocene into Gr. (G.) inflata by a reduction in the number of chambers in the final whorl and an increase in degree of inflation of the chambers (Kennett and Vella, 1975; Malmgren and Kennett, 1981). Gr. (G.) inflata is the end member of the continuously evolving lineage of Globoconella, and its evolutionary first appearance marks a valuable datum.
Globorotalia triangula Theyer and Globorotalia oscitans Todd are closely related forms. Maiya et al. (1976), from studies in the Japanese section, postulated an alternate phylogeny for Gr. (G.) inflata, from Gr. adamantea to Gr. orientalis to Gr. inflata praeinflata. Because of our clear and measured observations of gradation from Gr. puncticulata to Gr. inflata (see Malmgren and Kennett, 1981), the meaning of the lineage devised by Maiya et al. (1976) is unclear. [Kennett & Srinivasan 1983]

Molecular Genotypes recognised (data from PFR2 database, June 2017. References: Morard et al. 2011; Morard et al. 2013; Ujiié & Lipps 2009).

Most likely ancestor: Globoconella puncticulata - at confidence level 3 (out of 5). Data source: Kennett & Srinivasan 1983, fig. 13, Wei 1994, fig.1.

Biostratigraphic distribution

Geological Range:
Last occurrence (top): Extant Data source: present in the plankton (SCOR WG138)
First occurrence (base): within PL5 [Atl.] zone (2.39-3.13Ma, base in Piacenzian stage). Data source: Wei 1994 (quoted age converted to modern zone)

Plot of occurrence data:

Primary source for this page: Kennett & Srinivasan 1983, p.118

References:

Bandy, O. L. (1975). Messinian evaporite deposition and the Miocene/Pliocene boundary, Pasquasia-Capodarso Sections, Sicily. In, Saito, T. & Burckle, L. H. (eds) Late Neogene Epoch Boundaries. American Museum Natural History Micropaleontology Press, New York 49-63. gs

Banner, F. T. & Blow, W. H. (1967). The origin, evolution and taxonomy of the foraminiferal genus Pulleniatina Cushman, 1927. Micropaleontology. 13(2): 133-162. gs

d'Orbigny, A. (1839b). Foraminifères des Iles Canaries. In, Barker-Webb, P. & Berthelot, S. (eds) Histoire naturelle des Iles Canaries. 120-146. gs

Kennett, J. P. & Srinivasan, M. S. (1983). Neogene Planktonic Foraminifera. Hutchinson Ross Publishing Co., Stroudsburg, Pennsylvania. 1-265. gs

Kennett, J. P. & Vella, P. (1975). Late Cenozoic planktonic foraminifera and Paleoceanography at DSDP site 284 in the cool subtropical South Pacific. Initial Reports of the Deep Sea Drilling Project. 29: 769-799. gs

Maiya, S., Saito, T. & Sato, T. (1976). Late Cenozoic planktonic foraminiferal biostratigraphy of northwest Pacific sedimentary sequences. In, Takayanagi, Y. & Saito, T. (eds) Progress in Micropaleontology. Micropaleontology Press, New York 395-422. gs

Malmgren, B. A. & Kennett, J. P. (1981). Phyletic gradualism in a Late Cenozoic planktonic foraminiferal lineage; DSDP site 284, southwest Pacific. Paleobiology. 7(2): 230-240. gs

Morard, R., Quillévéré, F., Douady, C. J., de Vargas, C., de Garidel-Thoron, T. & Escarguel, G. (2011). Worldwide genotyping in the planktonic foraminifer Globoconella inflata: Implications for life history and paleoceanography. PLoS One. 6: e26665-. gs

Morard, R., Quillévéré, F., Escarguel, G. & Garidel-thoron, T. D. (2013). Ecological modeling of the temperature dependence of cryptic species of planktonic foraminifera in the Southern Hemisphere. Palaeogeography, Palaeoclimatology, Palaeoecology. 391: 13-33. gs

Schiebel, R. & Hemleben, C. (2017). Planktic Foraminifers in the Modern Ocean. Springer-Verlag, . 1-358. gs

Ujiié, Y. & Lipps, J. H. (2009). Cryptic diversity in planktonic foraminifera in the northwest Pacific ocean. Journal of Foraminiferal Research. 39: 145-154. gs

Vergnaud-Grazzini, C. (1976). Non-equilibrium isotopic compositions of shells of planktonic foraminifera in the Mediterranean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology. 20: 263-276. gs

Wei, K. -Y. (1994b). Stratophenetic tracing of phylogeny using SIMCA pattern recognition technique: a case study of the late Neogene planktic foraminifera Globoconella clade. Paleobiology. 20(1): 52-65. gs


logo

Globoconella inflata compiled by the pforams@mikrotax project team viewed: 17-9-2019

Taxon Search:
Advanced Search

Short stable page link: http://mikrotax.org/pforams/index.php?id=104078 Go to Archive.is to create a permanent copy of this page - citation notes



Comments (0)

No comments yet. Be the first!

Add Comment

* Required information
1000
Captcha Image
Powered by Commentics