Globorotaloides suteri


Classification: pf_cenozoic -> Globigerinidae -> Globorotaloides -> Globorotaloides suteri
Sister taxa: G. atlanticus, G. stainforthi, G. eovariabilis, G. hexagonus, G. quadrocameratus, G. suteri, G. testarugosus, G. variabilis, G. sp.,

Taxonomy

Citation: Globorotaloides suteri Bolli, 1957
Rank: species
Basionym: Globorotaloides suteri Bolli, 1957
Synonyms:
Taxonomic discussion:

An important aspect of our revised taxonomy is the resurrection of Globorotaloides suteri Bolli 1957. In the Atlas of Eocene Planktonic Foraminifera, Globorotaloides suteri was considered a junior synonym of Catapsydrax unicavus (Olsson and others, 2006a) based on similarities between the available holotype SEM images. This, however, would leave a range of four-chambered forms of Globorotaloides that do not fit in G. quadrocameratus, without a name. New SEM and reflected light microscope images (Pl. 4.9, Figs. 1-3, 5-7) made after cleaning of the G. suteri holotype (removal of gum tragacanth layers, B. Huber) reveals a typical Globorotaloides morphology comprising a flattened Globorotalia-like inner whorl. This feature is also visible in spiral views of the four paratypes of G. suteri. Based on this new evidence we here reinstate Globorotaloides suteri as a compact, four-chambered form that may or may not possess a bulla (see Plates 4.9 and 4.10, respectively). Applying the revised definition of the taxon, we retain two of Bolli’s G. suteri paratypes in G. suteri (Bolli 1957: pl. 27, figs. 9a-c, USNM P5655a and pl. 27, figs. 11a-b, USNM P5655c), while the other two have been reclassified as Globorotaloides eovariabilis (Bolli, 1957:117, pl. 27, figs. 10a-b, USNM P5655b and pl. 27, figs. 12a-b, USNM P5655d) because they have more evolute coiling and 5 chambers in the final whorl. Globorotaloides suteri is the most common Oligocene to Miocene Globorotaloides morphotype. This is consistent with Bolli’s original concept of the holotype and its subsequent usage (see extensive synonym list), although narrower in the sense that we include only four chambered forms. [Coxall & Spezzaferri 2018]

Catalog entries: Globorotaloides suteri;

Type images:

Distinguishing features: Test low trochospiral, lobulate, axial periphery rounded; 4 to 5 chambers in final whorl; aperture a low arch, often covered by bulla-like final chamber.

NB These concise distinguishing features statements are used in the tables of daughter-taxa to act as quick summaries of the differences between e.g. species of one genus.
They are being edited as the site is developed and comments on them are especially welcome.

Description


Diagnostic characters:

Globorotaloides suteri is distinguished from Globorotaloides quadrocameratus by the more compact coiling, more gradually enlarging and radial flattening of the final whorl (especially the final chamber) and less lobate peripheral outline. It differs from Catapsydrax unicavus in having 4 chambers in the final whorl compared to 3 or 3½ in C. unicavus. It differs from Globorotaloides eovariabilis in having only 4 chambers in the final whorl and from Globorotaloides testarugosus in radial orientation of the spiral sutures and more lobed peripheral outline. Bullate and non-bullate varieties occur, when bullate having a single infralaminal aperture. [Coxall & Spezzaferri 2018]


Wall type: Nonspinose (?). Normal perforate, coarsely cancellate, sacculifer-type wall texture, with a distinctly honeycomb appearance. [Coxall & Spezzaferri 2018]

Test morphology: Low trochospiral, equatorial periphery lobate, axial periphery rounded; chambers ovate to spherical, 11-14, arranged in 2-2½ whorls, 3½-4 chambers in the final whorl increasing gradually in size; spiral view reveals flattened ‘globorotalid’ inner whorl, spiral sutures slightly curved, radial, depressed; umbilical sutures straight, radial, depressed, umbilicus small, open in some specimens, in others (including the holotype) completely or partially covered by a bulla extending from the equatorial margin; primary aperture a low interiomarginal umbilical-extraumbilical arch surrounded by beak-like lip, infralaminal aperture slit-like and bordered by a lip. [Coxall & Spezzaferri 2018]

Size: Holotype maximum diameter 0.35 mm. [Coxall & Spezzaferri 2018]

Character matrix

test outline:Lobatechamber arrangement:Trochospiraledge view:Equally biconvexaperture:Umbilical-extraumbilical
sp chamber shape:Globularcoiling axis:Lowperiphery:N/Aaperture border:Bulla
umb chbr shape:Globularumbilicus:Narrowperiph margin shape:Broadly roundedaccessory apertures:Infralaminal
spiral sutures:Weakly depressedumb depth:Shallowwall texture:Cancellateshell porosity:Macroperforate: >2.5µm
umbilical or test sutures:Moderately depressedfinal-whorl chambers:3.5-4.0 N.B. These characters are used for advanced search. N/A - not applicable

Biogeography and Palaeobiology


Geographic distribution: Distribution is global, including low and mid-latitudes. It can be common in southern and northern high latitudes regions. It shows affinities with high productivity conditions. [Coxall & Spezzaferri 2018]

Isotope paleobiology: Relatively high δ18O and low δ13C compared to other species suggest that Globorotaloides suteri occupied a sub-thermocline planktonic habitat similar to Catapsydrax (Poore and Matthews, 1984; Barrera and Huber, 1991; Coxall, unpublished). The middle Eocene morphotype recorded as ‘Globorotaloides sp. 1’, by Sexton and others (2006), and which we here assign to G. suteri, similarly shows δ18O and low δ13C indicative of a thermocline habitat. [Coxall & Spezzaferri 2018]

Phylogenetic relations: Globorotaloides suteri probably evolved from Globorotaloides quadrocameratus. [Coxall & Spezzaferri 2018]

Gd. suteri
differs from Gd. variabilis in having more inflated early chambers and less curved sutures. Bolli (1957) considered Gd. suteri to be the ancestor of Gd. variabilis. [Kennett & Srinivasan 1983]

Most likely ancestor: Globorotaloides quadrocameratus - at confidence level 3 (out of 5). Data source: Coxall & Spezzaferri 2018 p.111.

Biostratigraphic distribution

Geological Range:
Notes: Middle Eocene Zone AP10 (Huber, 1991) (=AE7 Huber and Quillévéré, 2005) to lower-middle Miocene Zone N8 (Kennett and Srinivasan, 1983) (Zone M5 of Wade and others, 2011). [Coxall & Spezzaferri 2018]
Last occurrence (top): within M10 zone (11.63-11.79Ma, top in Serravallian stage). Data source: Coxall & Spezzaferri 2018
First occurrence (base): within Middle Eocene Sub-Epoch (37.75-47.84Ma, base in Lutetian stage). Data source: Coxall & Spezzaferri 2018

Plot of occurrence data:

Primary source for this page: Coxall & Spezzaferri 2018 - Olig Atlas chap.4 p.107; Kennett & Srinivasan 1983, p.214

References:

Barrera, E. & Huber, B. T. (1991). Paleogene and early Neogene oceanography of the southern Indian Ocean: Leg 119 foraminifer stable isotope results. Proceedings of the Ocean Drilling Program, Scientific Results. 119: 693-717. gs

Blow, W. H. & Banner, F. T. (1962). The mid-Tertiary (Upper Eocene to Aquitanian) Globigerinaceae. In, Eames, F. E. , Banner, F. T. , Blow, W. H. & Clarke, W. J. (eds) Fundamentals of mid-Tertiary Stratigraphical Correlation. Cambridge University Press, Cambridge 61-151. gs

Blow, W. H. (1979). The Cainozoic Globigerinida: A study of the morphology, taxonomy, evolutionary relationships and stratigraphical distribution of some Globigerinida (mainly Globigerinacea). E. J. Brill, Leiden. 2: 1-1413. gs

Bolli, H. M. & Saunders, J. B. (1985). Oligocene to Holocene low latitude planktic foraminifera. In, Bolli, H. M. , Saunders, J. B. & Perch-Neilsen, K. (eds) Plankton Stratigraphy. Cambridge University Press, Cambridge, UK 155-262. gs

Bolli, H. M. (1957b). Planktonic foraminifera from the Oligocene-Miocene Cipero and Lengua formations of Trinidad, B.W.I. In, Loeblich, A. R. , Jr. , Tappan, H. , Beckmann, J. P. , Bolli, H. M. , Montanaro Gallitelli & E. Troelsen, J. C. (eds) Studies in Foraminifera. U.S. National Museum Bulletin. 215: 97-123. gs

Chaisson, W. P. & Leckie, R. M. (1993). High-resolution Neogene planktonic foraminifer biostratigraphy of Site 806, Ontong Java Plateau (Western Equatorial Pacific). Proceedings of the Ocean Drilling Program, Scientific Results. 130: 137-178. gs

Cicha, I., Rögl, F., Rupp, C. & Ctyroká, J. (1998). Oligocene-Miocene foraminifera of the central Paratethys. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft. 549: 1-325. gs

Coxall, H. K. & Spezzaferri, S. (2018). Taxonomy, biostratigraphy, and phylogeny of Oligocene Catapsydrax, Globorotaloides, and Protentelloides. In, Wade, B. S. , Olsson, R. K. , Pearson, P. N. , Huber, B. T. & Berggren, W. A. (eds) Atlas of Oligocene Planktonic Foraminifera. Cushman Foundation for Foraminiferal Research, Special Publication. 46: 79-125. gs

Fleisher, R. L. (1974a). Cenozoic planktonic foraminifera and biostratigraphy, Arabian Sea, Deep Sea Drilling Project, Leg 23A. Initial Reports of the Deep Sea Drilling Project. 23: 1001-1072. gs

Hooyberghs, H. J. F. & de Meuter, F. (1972). Biostratigraphy and inter-regional correlation of the Miocene deposits of Northern Belgium based on planktonic foraminifera; the Oligocene-Miocene boundary on the southern edge of the North Sea basin, Brussels. Koninklijke Vlaamse Academie voor Wetenschappen, Letteren en Schone Kunsten van België.. -. gs

Huber, B. T. & Quillévéré, F. (2005). Revised Paleogene planktic foraminiferal biozonation for the Austral Realm. Journal of Foraminiferal Research. 35: 299-314. gs

Huber, B. T. (1991c). Paleogene and Early Neogene Planktonic Foraminifer Biostratigraphy of Sites 738 and 744, Kerguelen Plateau (Southern Indian Ocean). Proceedings of the Ocean Drilling Program, Scientific Results. 119: 427-449. gs

Jenkins, D. G. & Orr, W. N. (1972). Planktonic foraminiferal biostratigraphy of the east equatorial Pacific--DSDP Leg 9. Initial Reports of the Deep Sea Drilling Project. 9: 1059-1193. gs

Kennett, J. P. & Srinivasan, M. S. (1983). Neogene Planktonic Foraminifera. Hutchinson Ross Publishing Co., Stroudsburg, Pennsylvania. 1-265. gs

Krasheninnikov, V. A. & Basov, I. A. (1983). Stratigraphy of Cretaceous sediments of the Falkland Plateau based on planktonic foraminifers, Deep Sea Drilling Project, Leg 71. Initial Reports of the Deep Sea Drilling Project. 71: 789-820. gs

Krasheninnikov, V. A. & Pflaumann, U. (1977). Zonal stratigraphy and planktonic foraminifers of Paleogene deposits of the Atlantic Ocean to the west of Africa (Deep Sea Drilling Project, Leg 41). Initial Reports of the Deep Sea Drilling Project. 41: 581-612. gs

Leckie, R. M. & Webb, P. -N. (1986). Late Paleogene and early Neogene foraminifers of Deep Sea Drilling Project Site 270, Ross Sea, Antarctica. Initial Reports of the Deep Sea Drilling Project. 90: 1093-1142. gs

Leckie, R. M., Farnham, C. & Schmidt, M. G. (1993). Oligocene planktonic foraminifer biostratigraphy of Hole 803D (Ontong Java Plateau) and Hole 628A (Little Bahama Bank), and comparison with the southern high latitudes. Proceedings of the Ocean Drilling Program, Scientific Results. 130: 113-136. gs

Olsson, R. K., Pearson, P. N. & Huber, B. T. (2006c). Taxonomy, biostratigraphy, and phylogeny of Eocene Catapsydrax, Globorotaloides, Guembelitrioides, Paragloborotalia, Parasubbotina, and Pseudoglobigerinella n. gen. In, Pearson, P. N. , Olsson, R. K. , Hemleben, C. , Huber, B. T. & Berggren, W. A. (eds) Atlas of Eocene Planktonic Foraminifera. Cushman Foundation for Foraminiferal Research, Special Publication. 41: 67-110. gs

Poore, R. Z. & Brabb, E. E. (1977). Eocene and Oligocene planktonic foraminifera from the Upper Butano sandstone and type San Lorenzo formation, Santa Cruz Mountains, California. Journal of Foraminiferal Research. 7(4): 249-272. gs

Poore, R. Z. & Matthews, R. K. (1984). Oxygen isotope ranking of late Eocene and Oligocene planktonic foraminifers: implications for Oligocene sea-surface temperatures and global ice-volume. Marine Micropaleontology. 9: 111-134. gs

Quilty, P. G. (1976). Planktonic foraminifera DSDP Leg 34, Nazca Plate. Initial Reports of the Deep Sea Drilling Project. 34: 629-703. gs

Raju, D. S. N. (1971). Upper Eocene to Early Miocene planktonic foraminifera from the subsurface sediments in Cauvery Basin, India. Jahrbuch der Geologischen Bundesanstalt, Sonderband. 17: 7-68. gs

Sexton, P. E., Wilson, P. A. & Pearson, P. N. (2006). Palaeoecology of late middle Eocene planktic foraminifera and evolutionary implications. Marine Micropaleontology. 60: 1-16. gs

Spezzaferri, S. & Premoli Silva, I. (1991). Oligocene planktonic foraminiferal biostratigraphy and paleoclimatic interpretation from Hole 538A, DSDP Leg 77, Gulf of Mexico. Palaeogeography, Palaeoclimatology, Palaeoecology. 83: 217-263. gs

Stott, L. D. & Kennett, J. P. (1990). The Paleoceanographic and Paleoclimatic signature of the Cretaceous/Paleogene boundary in the Antarctic: Stable isotopic results from ODP Leg 113. Proceedings of the Ocean Drilling Program, Scientific Results. 113: 829-848. gs

van Eijden, A. J. M. & Smit, J. (1991). Eastern Indian Ocean Cretaceous and Paleogene quantitative biostratigraphy. Proceedings of the Ocean Drilling Program, Scientific Results. 121: 77-123. gs

Wade, B. S., Pearson, P. N., Berggren, W. A. & Pälike, H. (2011). Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth-Science Reviews. 104: 111-142. gs


logo

Globorotaloides suteri compiled by the pforams@mikrotax project team viewed: 26-6-2019

Taxon Search:
Advanced Search

Short stable page link: http://mikrotax.org/pforams/index.php?id=104145 Go to Archive.is to create a permanent copy of this page - citation notes



Comments (0)

No comments yet. Be the first!

Add Comment

* Required information
1000
Captcha Image
Powered by Commentics