Morozovella subbotinae

Classification: pf_cenozoic -> muricate non-spinose -> Truncorotaloididae -> Morozovella -> Morozovella subbotinae
Sister taxa: M. caucasica, M. crater, M. aragonensis, M. lensiformis, M. subbotinae, M. marginodentata, M. formosa, M. gracilis, M. aequa, M. apanthesma, M. angulata, M. praeangulata, M. edgari, M. allisonensis, M. velascoensis, M. acuta, M. occlusa, M. pasionensis, M. acutispira, M. conicotruncata, M. sp.,


Citation: Morozovella subbotinae (Morozova 1939)
Rank: Species
Basionym: Morozovella
Taxonomic discussion: This robust morphospecies is a characteristic element of latest Paleocene and early Eocene planktonic foraminiferal assemblages. Morozovella subbotinae has had a convoluted taxonomic history. It is generally agreed by specialists that Globorotalia subbotinae Morozova, 1939 is a senior synonym of Globorotalia rex Martin, 1943 (see Berggren, 1977; Blow, 1979 for discussions). In the (former) Soviet Union this taxon was identified with (the middle Eocene) Globorotalia crassata Cushman, 1925 (see our treatment in Pearson and Berggren, Chapter 10, this volume; see also Subbotina, 1947, p. 119-121; 1, p. 211). Included in this taxon subsequently by Subbotina (1953) were forms referable to M. aequa and M. subbotinae (including the holotype reference of Morozova, 1939, of G. subbotinae) as well as forms (1947, pl. 9, figs. 15-17) subsequently (1953, pl. 18, figs. 1a-c) referred to the new taxon Globorotalia marginodentata Subbotina, 1953. Examination of a suite of specimens identified as G. crassata donated to one of us (WAB) in 1962 by Subbotina bears this out.
An enigmatic case of taxonomic affinities is provided by Globorotalia nartanensis Shutskaya, 1956. The (relatively poor) illustration of the holotype is balanced by a clear and thorough description of the taxon. The low, biconvex test, thick, blunt “spines” (=muricae) on the test surface which give the test the appearance of having a thick, “granular” test wall and the transitional characters to M. aragonensis noted by Shutskaya (1956) make it quite clear that this taxon, in its original concept, is a junior synonym of Globorotalia lensiformis Subbotina, 1953. However, Shutskaya (1972b) subsequently illustrated two morphotypes identified as G. nartanensis from the G. subbotinae Zone of the south west Crimea which are virtually identical with Subbotina’s (1953, pl. 17, figs. 13a-c) illustrations of a peripherally compressed test with development of a frilled (“marginodentate”) keel which she considered transitional between Globorotalia crassata ( =G. aequa/ subbotinae) and G. marginodentata.
Blow (1979, p. 1018-1026) has drawn attention to the close similarities between M. subbotinae (Morozova), M. marginodentata (Subbotina) and M. gracilis (Bolli). In fact he considered gracilis separated from subbotinae at the subspecies level based on the increase in chamber number (from 4½ in subbotinae to 5½-6 in gracilis), associated with the development of a
somewhat more evolute coiling-mode and more vorticiform spiral intercameral sutures in gracilis and, finally, the slightly different (shorter) stratigraphic range of gracilis. The development of a strongly dentate (fimbriate) muricocarina (marginodentata) on some morphotypes was considered little more than ecophenotypic variation within the subbotinae plexus of morphotypes, indicative of high productivity, and marginodentata was, accordingly, considered only a variant of subbotinae (cf. Berggren, 1971, who had suggested earlier that marginodentata might be synonymous with, or an ecophenotypic variant of, gracilis). [Berggren & Pearson 2006]

Catalog entries: Globorotalia bollii;
Globorotalia nartanensis;
Globorotalia rex;
Globorotalia subbotinae;

Type images:

Distinguishing features: Morozovella subbotinae is distinguished by its relatively large and strongly muricocarinate test, and the circumumbilical elevation/extension of the chambers and weakly ornamented circumumbilical chamber tips.

NB The short diagnoses are used in the tables of daughter-taxa to act as quick summaries of the differences between e.g. species of one genus. They have initially been copied from the diagnostic characters/distinguishing features sections of the Eocene and Paleocene Atlases, they will be edited as the site is developed.


Diagnostic characters: Morozovella subbotinae is distinguished by its relatively large and strongly muricocarinate test, and the circumumbilical elevation/extension of the chambers and weakly ornamented circumumbilical chamber tips.
[Berggren & Pearson 2006]

Wall type: Normal perforate, muricate, nonspinose. [Berggren & Pearson 2006]

Test morphology: Test relatively large (to 0.5 mm maximum diameter), planoconvex to weakly biconvex test with moderately lobulate, strongly/thickly keeled periphery; 4-4.5 chambers in last whorl, generally covered with muricae on umbilical side, spiral side relatively smooth; umbilical and spiral intercameral sutures weakly curved, tangential on spiral side yielding trapezoidal-shaped chambers; circumumbilical chamber tips weakly ornamented by muricae and surrounding deep, narrowly open umbilicus; aperture a low, umbilical-extraumbilical slit extending almost to periphery and bordered by weak lip. [Berggren & Pearson 2006]

Size: Holotype diameter: 0.36mm; thickness: 0.20mm. [Berggren & Pearson 2006]

Character matrix

test outline:Lobatechamber arrangement:Trochospiraledge view:Planoconvexaperture:-
umb chamber shape:Inflatedcoiling axis:Moderateperiphery:Single keelaperture border:Thin lip
sp chbr shape:Trapezoidalumbilicus:Narrowperiph margin shape:Subangularaccessory apertures:None
umbilical or test sutures:Moderately depressedumb depth:Deepwall texture:Moderately muricateshell porosity:Finely Perforate: 1-2.5µm
spiral sutures:Weakly depresseddiameter mm:0.36width mm:breadth mm:0.2
final-whorl chambers:4.0-4.5

Biogeography and Palaeobiology

Geographic distribution: Widely distributed in (sub)tropical assemblages in Atlantic, Indo-Pacific, and typical Tethyan biogeographies and as far south as 60o S in association with the early Eocene extra-tropical excursion of carinate morozovellids on the Kerguelen Plateau (Huber, 1991, ODP Site 738; Berggren, 1992, ODP Site 747; see also Olsson and others, 1999, p. 67, text-figure 24). [Berggren & Pearson 2006]
Aze et al. 2011 summary: Low to middle latitudes; based on Olsson et al. (1999)

Isotope paleobiology: Morozovella subbotinae has ∂13C and ∂18O values similar to M. velascoensis and Acarinina nitida and has more positive ∂13C and ∂18O than Subbotina triangularis (D’Hondt and others, 1994). Morozovella subbotinae displays a pronounced increase in ∂13C with increased test size but little corresponding change in ∂18O (D’Hondt and others, 1994). [Berggren & Pearson 2006]
Aze et al. 2011 ecogroup 1 - Open ocean mixed-layer tropical/subtropical, with symbionts. Based on very heavy δ13C and relatively light δ18O. Sources cited by Aze et al. 2011 (appendix S3): D'hondt et al. (1994)

Phylogenetic relations: This taxon evolved from M. aequa by an increase in test size, developing a thicker, broader peripheral muricocarina and more pronounced angulo-conical test; it evolved into M. lensiformis and also gave rise to M. marginodentata and M. gracilis. [Berggren & Pearson 2006]

Most likely ancestor: Morozovella aequa - at confidence level 4 (out of 5). Data source: Berggren & Pearson (2006) f11.1.

Biostratigraphic distribution

Geological Range:
Notes: Zone P5 to Zone E5. We have found that M. subbotinae has its FAD at the top of Chron C25n at ODP Site 577 and has a short overlap in the upper part of its range with Morozovella aragonensis. Its LAD is used to denote the boundary between Zones E5 and E6 here. The premature disappearance of M. subbotinae (within Zone P6b = E4) at Indian Ocean Site 213 is ascribed to gradually increasing dissolution in the early Eocene. [Berggren & Pearson 2006]
The LAD of Morozovella subbotinae marks the base of zone E6 / top of E5 (Wade et al. 2011)
Last occurrence (top): at top of E5 zone (100% up, 50.7Ma, in Ypresian stage). Data source: zonal marker (Wade et al. 2011)
First occurrence (base): at base of P5 zone (0% up, 57.1Ma, in Thanetian stage). Data source: Berggren & Pearson (2006) f11.1

Plot of occurrence data:

Primary source for this page: Berggren & Pearson 2006 - Atlas of Eocene Planktonic Foraminifera, chapter 11, p. 370


Basov, I.A., (1995). Paleogene planktonic foraminifer biostratigraphy of Sites 883 and 884, Detroit Seamount (Subarctic Pacific). Proceedings of the Ocean Drilling Program, Scientific Results, 145: 157- 170.

Berggren, W.A. & Pearson, P.N., (2006). Taxonomy, biostratigraphy, and phylogeny of Eocene Morozovella. In: Pearson, P.N. et al. (Editors), Atlas of Eocene Planktonic Foraminifera, Cushman Foundation Special Publication 41. Cushman Foundation Special Publication. 41 Allen Press, Lawrence, Kansas, pp. 343-376.

Berggren, W.A., (1971). Paleogene planktonic foraminiferal faunas on Legs I-IV (Atlantic Ocean) JOIDES Deep Sea Drilling Program: a synthesis. In: Farinacci, A. (Editor), Proceedings of the II Planktonic Conference, Roma 1970. Edizioni Tecnoscienza, Rome, pp. 57-77.

Berggren, W.A., (1977). Atlas of Palaeogene Planktonic Foraminifera: some Species of the Genera Subbotina, Planorotalites, Morozovella, Acarinina and Truncorotaloides. In: Ramsay, A.T.S. (Editor), Oceanic Micropaleontology. Academic Press, London, pp. 205-300.

Berggren, W.A., (1992). Paleogene planktonic foraminifer magnetobiostratigraphy of the southern Kerguelen Plateau (sites 747-749). Proceedings of the Ocean Drilling Program, Scientific Results, 120. Ocean Drilling Program, College Station, Texas, 551-568 pp.

Blow, W.H., (1979). The Cainozoic Globigerinida: A study of the morphology, taxonomy, evolutionary relationships and stratigraphical distribution of some Globigerinida (mainly Globigerinacea), 2. E. J. Brill, Leiden, 1413 pp.

Bolli, H.M., (1957). The genera Globigerina and Globorotalia in the Paleocene-Lower Eocene Lizard Springs Formation of Trinidad. In: Loeblich, A.R., Jr. et al. (Editors), Studies in Foraminifera, U.S. National Museum Bulletin 215. U.S. Government Printing Office, Washington, D.C., pp. 61-82.

Bralower, T.J. & others, (1995). Late Paleocene to Eocene Paleoceanography of the equatorial Pacific Ocean: Stable isotope record at ocean drilling program site 865, Allison Guyot. Paleoceanography, 20: 391-406.

Cushman, J.A., (1925). Some new foraminifera from the Velasco shale of Mexico. Contributions from the Cushman Laboratory for Foraminiferal Research, 1(6): 18-23.

D'Hondt, S.; Zachos, J.C. & Schultz, G., (1994). Stable isotope signals and photosymbiosis in Late Paleocene planktic foraminifera. Paleobiology, 20: 391-406.

El-Naggar, Z.R., (1966). Stratigraphy and planktonic foraminifera of the Upper Cretaceous-Lower Tertiary succession in the Esna-Idfu region, Nile Valley, Egypt, U. A. R. Bulletin of the British Museum (Natural History) Geology, supplement 2: 1-291.

Ferrer, J.; Le Calvez, L.; Luterbacher, H. & Premoli Silva, I., (1973). Contribution à l’étude des foraminifères Ilerdiens de la region de Tremp (Catalogne). Mémoires du Muséum National d’Histoire naturelle, nouvelle série, série C, Sciences de la terre, 29: 1-107.

Gohrbandt, K., (1963). Zur Gliederung des Palaeogen im Helvetikum nordlich Salzburg nach planktonischen Foraminiferen. Mitt Geol Ges, Wien, 56(1): 63.

Hillebrandt von, A., (1962). Das Paleozän und seine Foraminiferenfauna im Becken von Reichenhall und Salzburg. Bayerische Akademie der Wissenschaften Mathematisch-Naturwissenschaftliche Klasse, Abhandlungen, Neue Folge, 108: 1-182.

Huber, B.T., (1991). Paleogene and Early Neogene Planktonic Foraminifer Biostratigraphy of Sites 738 and 744, Kerguelen Plateau (Southern Indian Ocean). Proceedings of the Ocean Drilling Program, Scientific Results, 119: 427-449.

Jenkins, D.G., (1971). New Zealand Cenozoic Planktonic Foraminifera. New Zealand Geological Survey, Paleontological Bulletin, 42: 1-278.

Loeblich, A.R., Jr. & Tappan, H., (1957). Planktonic foraminifera of Paleocene and early Eocene Age from the Gulf and Atlantic coastal plains. In: Loeblich, A.R., Jr. et al. (Editors), Studies in Foraminifera, U.S. National Museum Bulletin 215. U.S. Government Printing Office, Washington, D.C., pp. 173-198.

Lu, G. & Keller, G., (1993). The Paleocene-Eocene transition in the Antarctic Indian Ocean: Inference from planktic foraminifera. Marine Micropaleontology, 21: 101-142.

Lu, G. & Keller, G., (1995). Planktic foraminiferal faunal turnovers in the subtropical Pacific during the Late Paleocene to Early Eocene. Journal of Foraminiferal Research, 25: 97-116.

Luterbacher, H.P., (1964). Studies in some Globorotalia from the Paleocene and Lower Eocene of the Central Apennines. Eclogae Geologicae Helvetiae, 57: 631-730.

Luterbacher, H.P., (1975). Paleocene and Early Eocene planktonic foraminifera Leg 32, Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project, 32: 725-728.

Luterbacher, H.P., (1975). Planktonic Foraminifera of the Paleocene and Early Eocene, Possagno Section. Schweizerische Palaontologische Abhandlungen, 97: 57-67.

Mallory, V.S., (1959). Lower Tertiary biostratigraphy of the California Coast Ranges. American Association of Petroleum Geologists, Tulsa, Oklahoma, 416 pp.

Martin, L.T., (1943). Eocene foraminifera from the type Lodo Formation, Fresno County, California. Stanford University Publications, University Series, Geological Sciences, 3. Stanford University Press, Stanford University, CA, 1-35 pp.

Morozova, V.G., (1939). On the Stratigraphy of the Upper Cretaceous and Lower Tertiary Deposits in the FMBA Oil Bearing District of the Fauna of Foraminifera. Bul. Soc. naturalistes Moscou, 47: 59-86.

Murray, J.W.; Curry, D.; Haynes, J.R. & King, C., (1989). Palaeogene. In: Jenkins, D.G. and Murray, J.W. (Editors), Stratigraphical Atlas of Fossil Foraminifera. Ellis Horwood Limited, Chichester, pp. 228-267.

Olsson, R.K.; Hemleben, C.; Berggren, W.A. & Huber, B.T., (1999). Atlas of Paleocene Planktonic Foraminifera. Smithsonian Contributions to Paleobiology, 85. Smithsonian Institution Press, Washington, DC, 1-252 pp.

Proto Decima, F. & Zorzi, P., (1965). Studio micropaleontologico-stratigrafico della serie Cretaceo-Terziaria del Molinetto di Pederobba (Trevigiano occidentale). Mem. Istit. Geol. Min. Univ. Padova, 25: 1-44.

Said, R. & Sabry, H., (1964). Planktonic foraminifera from the type locality of the Esna Shale in Egypt. Micropaleontology, 10: 375-395.

Schwager, C., (1883). Die Foraminiferen aus den Eocaenablagerungen der libyschen Wuste und Aegytens. Palaeontographica, 30(1): 81-153.

Snyder, S.W. & Waters, V.J., (1985). Cenozoic planktonic foraminiferal biostratigraphy of the Goban Spur Region, Deep Sea Drilling Project Leg 80. Initial Reports of the Deep Sea Drilling Project, 80: 439-472.

Stainforth, R.M.; Lamb, J.L.; Luterbacher, H.; Beard, J.H. & Jeffords, R.M., (1975). Cenozoic planktonic foraminiferal zonation and characteristics of index forms. The University of Kansas Paleontological Contributions, 62: 1-425.

Toumarkine, M. & Luterbacher, H., (1985). Paleocene and Eocene planktic foraminifera. Plankton Stratigraphy. Cambridge Univ. Press, Cambridge, 87-154 pp.

Wade, B.S.; Pearson, P.N.; Berggren, W.A. & Pälike, H., (2011). Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth-Science Reviews, 104: 111-142.

Warraich, M.Y. & Ogasawara, K., (2001). Tethyan Paleocene-Eocene planktic foraminifera from the Rakhi Nala and Zinda Pir land sections of the Sulaiman Range, Pakistan. Science Reports of the Institute of Geosciences, University of Tsukuba, Section B = Geological Sciences, 22: 1-59.


Morozovella subbotinae compiled by the pforams@mikrotax project team viewed: 25-6-2018

Taxon Search:
Advanced Search

Go to to create a permanent copy of this page - citation notes

Comments (0)

No comments yet. Be the first!

Add Comment

* Required information
Captcha Image
Powered by Commentics