Subbotina utilisindex


Classification: pf_cenozoic -> Globigerinidae -> Subbotina -> Subbotina utilisindex
Sister taxa: S. projecta, S. tecta, S. jacksonensis, S. corpulenta, S. eocaena, S. gortanii, S. crociapertura, S. yeguaensis, S. senni, S. roesnaesensis, S. utilisindex, S. angiporoides, S. minima, S. linaperta, S. patagonica, S. cancellata, S. hornibrooki, S. velascoensis, S. triloculinoides, S. triangularis, S. trivialis, S. sp.,

Taxonomy

Citation: Subbotina utilisindex (Jenkins & Orr 1973)
Rank: Species
Basionym: Globigerina utilisindex
Synonyms: [Wade et al. 2018]
Taxonomic discussion:

This species is common in lower Oligocene assemblages. Jenkins and Orr (1973) regarded S. utilisindex to be intermediate between S. linaperta and S. angiporoides. We consider the paratype specimens of Jenkins and Orr (1973) illustrated on pl. 1, figs. 4-6, to be more consistent with S. linaperta. Furthermore, some specimens illustrated by Leckie and others (1993) appear to morphologically converge with the S. angiporoides/minima group (see Plate 10.1). [Wade et al. 2018]

Catalog entries: Globigerina utilisindex

Type images:

Distinguishing features: Like S. linaperta but with more compact coiling, more equidimensional size of final whorl chambers; lower and more umbilical aperture, with less-developed lip; also less coarsely cancellate wall.

NB These concise distinguishing features statements are used in the tables of daughter-taxa to act as quick summaries of the differences between e.g. species of one genus.
They are being edited as the site is developed and comments on them are especially welcome.

Description


Diagnostic characters:

Subbotina utilisindex is characterized by its low rate of chamber expansion resulting in a compact test consisting of three evenly sized chambers in the final whorl. It is distinguished from S. minima by the more closed umbilicus and compressed chambers. It “differs from Subbotina linaperta by (1) the more compact coiling, (2) more equidimensional size of final whorl chambers, (3) lower apertural arch and more umbilical position of the aperture, (4) less developed apertural lip, and (5) less coarsely cancellate wall texture. Differs from S. angiporoides by not possessing an enveloping final chamber” (Olsson and others, 2006:161). [Wade et al. 2018]


Wall type: Spinose, cancellate, normal perforate, ruber/sacculifer-type wall. [Wade et al. 2018]

Test morphology: Test trilobate, equatorial margin rounded; chambers coiled in compact, low trochospire, arranged in two whorls, chambers globular, final chamber comprising less than half of test; sutures radial to slightly curved, moderately depressed; umbilicus narrow, shallow; aperture a very low interiomarginal, umbilical-extraumbilical slit bordered by a narrow lip (modified after Olsson and others, 2006). [Wade et al. 2018]

Size: Holotype maximum diameter 0.37 mm. [Wade et al. 2018]

Character matrix

test outline:Subquadratechamber arrangement:Trochospiraledge view:Equally biconvexaperture:Umbilical
sp chamber shape:Globularcoiling axis:Lowperiphery:N/Aaperture border:Thin lip
umb chbr shape:Globularumbilicus:Narrowperiph margin shape:Broadly roundedaccessory apertures:None
spiral sutures:Moderately depressedumb depth:Shallowwall texture:Spinoseshell porosity:Finely Perforate: 1-2.5µm
umbilical or test sutures:Moderately depressedfinal-whorl chambers:3.0-3.0 N.B. These characters are used for advanced search. N/A - not applicable

Biogeography and Palaeobiology


Geographic distribution: “Cosmopolitan; particularly common in early Oligocene assemblages at southern, high latitudes. It may have been adapted to cold, nutrient rich waters” (Olsson and others, 2006:162). [Wade et al. 2018]

Isotope paleobiology: “Poore and Matthews (1984) and Wade and Kroon (2002) recorded this species as having δ18O values intermediate between surface dwelling and benthic species, indicating a deep planktonic habitat” (Olsson and others, 2006:162). This interpretation is supported by multispecies stable isotope analyses from equatorial Pacific Ocean Site U1334 (Moore and others, 2014). [Wade et al. 2018]
Aze et al. 2011 ecogroup 4 - Open ocean sub-thermocline. Based on very light δ13C and very heavy δ18O. Sources cited by Aze et al. 2011 (appendix S3): Poore & Matthews (1984); Coxall et al. (2000); Wade & Kroon (2002)

Phylogenetic relations: Probably descended from S. linaperta during the late Eocene (Olsson and others, 2006). [Wade et al. 2018]

Most likely ancestor: Subbotina linaperta - at confidence level 2 (out of 5). Data source: Olsson et al. 2006 f6.2.

Biostratigraphic distribution

Geological Range:
Notes: “Originally recorded in the eastern equatorial Pacific (Jenkins and Orr, 1973). At southern, high latitudes Huber (1991) recorded S. utilisindex from the middle upper Eocene through lower Oligocene (Zones AE9-AO1)” (Olsson and others, 2006:161-162). The extinction of S. utilisindex is at the same level as the extinction of S. angiporoides in high latitudes (Nocchi and others, 1991), but precedes S. angiporoides in the Gulf of Mexico (Spezzaferri and Premoli Silva, 1991). [Wade et al. 2018]
Last occurrence (top): within O3 zone (29.18-30.28Ma, top in Rupelian stage). Data source: Wade et al. 2018 f10.1
First occurrence (base): within E15 zone (34.68-35.89Ma, base in Priabonian stage). Data source: Eocene Atlas

Plot of occurrence data:

Primary source for this page: Wade et al. 2018 - Olig Atlas chap.10 p.327; Olsson et al. 2006 - Eocene Atlas, chap. 6, p. 161

References:

Beckmann, J. P. (1971). The foraminifera of Sites 68 to 75. Initial Reports of the Deep Sea Drilling Project. 8: 713-726. gs

Berggren, W. A. (1992). Paleogene planktonic foraminifer magnetobiostratigraphy of the southern Kerguelen Plateau (sites 747-749). Proceedings of the Ocean Drilling Program, Scientific Results. 551-568. gs

Finlay, H. J. (1939b). New Zealand foraminifera: Key species in stratigraphy - no. 2. Transactions of the Royal Society of New Zealand. 69(1): 89-128. gs

Finlay, H. J. (1939c). New Zealand foraminifera: Key species in stratigraphy - no. 3. Transactions of the Royal Society of New Zealand. 69(3): 309-329. gs

Hornibrook, N. d. B. (1965). Globigerina angiporoides n. sp. from the Upper Eocene and Lower Oligocene of New Zealand and the status of Globigerina angipora Stache, 1865. New Zealand Journal of Geology and Geophysics. 8(5): 834-838. gs

Huber, B. T. (1991c). Paleogene and Early Neogene Planktonic Foraminifer Biostratigraphy of Sites 738 and 744, Kerguelen Plateau (Southern Indian Ocean). Proceedings of the Ocean Drilling Program, Scientific Results. 119: 427-449. gs

Jenkins, D. G. & Orr, W. N. (1973). Globigerina utilisindex n. sp. from the upper Eocene-Oligocene of the eastern equatorial Pacific. Journal of Foraminiferal Research. 3(3): 133-136. gs

Leckie, R. M., Farnham, C. & Schmidt, M. G. (1993). Oligocene planktonic foraminifer biostratigraphy of Hole 803D (Ontong Java Plateau) and Hole 628A (Little Bahama Bank), and comparison with the southern high latitudes. Proceedings of the Ocean Drilling Program, Scientific Results. 130: 113-136. gs

Moore, T. C. et al. (2014). Equatorial Pacific Productivity Changes near the Eocene-Oligocene Boundary. Paleoceanography. 29: 825-844. gs

Nocchi, M., Amici, E. & Premoli Silva, I. (1991). Planktonic foraminiferal biostratigraphy and paleoenvironmental interpretation of Paleogene faunas from the subantarctic transect, Leg 114. Proceedings of the Ocean Drilling Program, Scientific Results. 114: 233-273. gs

Olsson, R. K., Hemleben, C., Huber, B. T. & Berggren, W. A. (2006b). Taxonomy, biostratigraphy, and phylogeny of Eocene Globigerina, Globoturborotalita, Subbotina, and Turborotalita. In, Pearson, P. N. , Olsson, R. K. , Hemleben, C. , Huber, B. T. & Berggren, W. A. (eds) Atlas of Eocene Planktonic Foraminifera. Cushman Foundation for Foraminiferal Research, Special Publication. 41(Chap 6): 111-168. gs

Poore, R. Z. & Matthews, R. K. (1984). Oxygen isotope ranking of late Eocene and Oligocene planktonic foraminifers: implications for Oligocene sea-surface temperatures and global ice-volume. Marine Micropaleontology. 9: 111-134. gs

Spezzaferri, S. & Premoli Silva, I. (1991). Oligocene planktonic foraminiferal biostratigraphy and paleoclimatic interpretation from Hole 538A, DSDP Leg 77, Gulf of Mexico. Palaeogeography, Palaeoclimatology, Palaeoecology. 83: 217-263. gs

Wade, B. S., Olsson, R. K., Pearson, P. N., Edgar, K. M. & Premoli Silva, I. (2018a). Taxonomy, biostratigraphy, and phylogeny of Oligocene Subbotina. In, Wade, B. S. , Olsson, R. K. , Pearson, P. N. , Huber, B. T. & Berggren, W. A. (eds) Atlas of Oligocene Planktonic Foraminifera. Cushman Foundation for Foraminiferal Research, Special Publication. 46(Chap 10): 307-330. gs


logo

Subbotina utilisindex compiled by the pforams@mikrotax project team viewed: 17-11-2019

Taxon Search:
Advanced Search

Short stable page link: http://mikrotax.org/pforams/index.php?id=100297 Go to Archive.is to create a permanent copy of this page - citation notes



Comments (0)

No comments yet. Be the first!

Add Comment

* Required information
1000
Captcha Image
Powered by Commentics