Tenuitella gemma


Classification: pf_cenozoic -> Globigerinitidae -> Tenuitella -> Tenuitella gemma
Sister taxa: T. iota, T. fleisheri, T. parkerae, T. clemenciae, T. angustiumbilicata, T. munda, T. gemma, T. praegemma, T. patefacta, T. insolita, T. sp.,

Taxonomy

Citation: Tenuitella gemma (Jenkins 1966)
Rank: Species
Basionym: Globorotalia gemma
Synonyms: [Pearson et al. 2018]
Taxonomic discussion:

This species was discussed in the Atlas of Eocene Planktonic Foraminifera by Huber and others (2006). Here we extend / modify the synonymy list as follows [Pearson et al. 2018]:

Li (1987) introduced his taxon neoclemenciae for gemma-like forms in which the aperture and lip extend to the periphery and in which the spiral side is flattened to concave. In his investigations of sections in Trinidad, Li (1987:310) found it to have a similar range to gemma. We report that the final chamber of the holotype was inadvertently broken off in our attempts to obtain a new SEM: images of the broken specimen (not shown here) allow us to confirm that the aperture on the penultimate chamber is also marginal in position. Spezzaferri (1994) recognized neoclemenciae and suggested it had fewer chambers than gemma although the holotypes of both have 5 chambers in the final whorl. She illustrated specimens attributed to both gemma and neoclemenciae that show a peripherally extended aperture, hence her concept was seemingly different from Li (1987). Various authors have documented neoclemenciae in taxonomic lists without illustrating the taxon or noting its distinguishing feature (e.g., Poag and Commeau, 1995; Miller and others, 1996; Malumián and Olivero, 2006; Alegret and others, 2008). We have observed that the apertural position in gemma is quite variable, sometimes even approaching a pseudoplanispiral condition (e.g., Plate 16.5, Figs. 10, 12). We also note that the holotype of gemma itself has an aperture that extends almost to the periphery and a somewhat concave spiral side (Plate 16.5, Figs. 1-3). With our current knowledge, there seems little to be gained stratigraphically in separating the forms so we have adopted the conservative approach and included neoclemenciae in synonymy with gemma. [Pearson et al. 2018]

The holotype of T. gemma, which is illustrated on Plate 16.7, Figs. 16-18), shows the characteristic features of the species, including a weakly lobate equatorial periphery, a nearly closed umbilicus, and a low apertural arch. Forms that are morphologically transitional between T. gemma and its ancestral species, T. praegemma, appear in the uppermost Eocene and range into the lowermost Oligocene. [Huber et al. 2006]

Catalog entries: Globorotalia gemma, Globigerinella liverovskae, Globigerina khadumica, Globorotalia (Turborotalia) cifellii, Globorotalia (Turborotalia) nkbrowni

Type images:

Distinguishing features: Like T. praegemma but test slightly more compressed, less lobate periphery and nearly closed umbilicus; and by absence of secondary apertures or apertural lips.

NB These concise distinguishing features statements are used in the tables of daughter-taxa to act as quick summaries of the differences between e.g. species of one genus.
They are being edited as the site is developed and comments on them are especially welcome.

Description


Diagnostic characters:

Distinguished from T. praegemma by its slightly more compressed test, less lobate equatorial periphery and nearly closed umbilicus and by the absence of ovoid or subcrescentic chambers and secondary apertures. Distinguished from T. munda by usually having 5-6, rather than 4 chambers in the final whorl. Distinguished from T. angustiumbilicata by its lower trochospiral coiling mode, less inflated chambers, and more compressed equatorial periphery. [Pearson et al. 2018]


Wall type: Microperforate glutinata-type wall, surface smooth to finely pustulose, pustules irregularly scattered on both sides of test. [Pearson et al. 2018]

Test morphology: Test small, very low trochospiral, equatorial periphery lobate, circular to elliptical in outline, axial periphery rounded; chambers globular, slightly compressed, 4½-6 in the final whorl, 10-12 comprising adult tests, increasing slowly in size; sutures slightly recurved, depressed on spiral and umbilical sides; umbilicus narrow, deep, sometimes nearly closed; aperture a very low arch bordered by a narrow lip, intra- to extraumbilical in position, sometimes extending to periphery (‘neoclemenciae’ morphotype) (description modified from Huber and others, 2006). [Pearson et al. 2018]

Size: Holotype 0.16 mm diameter; hypotypes 0.13-0.17 mm diameter, 0.07-0.08 mm breadth. [Pearson et al. 2018]

Character matrix

test outline:Lobatechamber arrangement:Trochospiraledge view:Equally biconvexaperture:Extraumbilical-peripheral
sp chamber shape:Globularcoiling axis:Lowperiphery:N/Aaperture border:Thin lip
umb chbr shape:Globularumbilicus:Narrowperiph margin shape:Broadly roundedaccessory apertures:None
spiral sutures:Moderately depressedumb depth:Shallowwall texture:Finely pustuloseshell porosity:Microperforate: <1µm
umbilical or test sutures:Strongly depressedfinal-whorl chambers:5.0-6.0 N.B. These characters are used for advanced search. N/A - not applicable

Biogeography and Palaeobiology


Geographic distribution: Global, from tropics to Ross Sea, Antarctica (Leckie and Webb, 1986; see map in Li and Radford, 1991, fig. 15). [Pearson et al. 2018]

Isotope paleobiology: No data available. [Pearson et al. 2018]

Phylogenetic relations: Descended from Tenuitella praegemma in the late Eocene (Li, 1987). Ancestral to Tenuitella munda in the late Eocene (see discussion under that species). [Pearson et al. 2018]

Most likely ancestor: Tenuitella praegemma - at confidence level 4 (out of 5). Data source: Li, 1987; Huber et al. 2006 f16.2.
Likely descendants: Tenuitella munda;

Biostratigraphic distribution

Geological Range:
Notes: The lowest confirmed occurrences are in the uppermost Eocene (e.g., Toumarkine, 1978; Huber and others, 2006) although we note that Premoli Silva and Boersma (1988) recorded an occurrence in the uppermost middle Eocene Zone P14. The highest confirmed occurrences are in the uppermost Oligocene close to the Oligocene/Miocene boundary (Li and others, 1992; Li and Radford, 1991; Spezzaferri, 1994; Pearson and Wade, 2009). Spezzaferri (1994) and Pälike and others (2010) record specimens in the lower Miocene but none are illustrated and we have been unable to confirm those observations. [Pearson et al. 2018]
Last occurrence (top): within O7 zone (22.96-25.21Ma, top in Aquitanian stage). Data source: Pearson et al. 2018 f16.1
First occurrence (base): within E15 zone (34.68-35.89Ma, base in Priabonian stage). Data source: Pearson et al. 2018 f16.1

Plot of occurrence data:

Primary source for this page: Pearson et al. 2018 - Olig Atlas chap.16 p.447; Huber et al. 2006 - Eocene Atlas, chap. 16, p. 488

References:

Berggren, W. A. (1992). Paleogene planktonic foraminifer magnetobiostratigraphy of the southern Kerguelen Plateau (sites 747-749). Proceedings of the Ocean Drilling Program, Scientific Results. 551-568. gs

Blow, W. H. & Banner, F. T. (1962). The mid-Tertiary (Upper Eocene to Aquitanian) Globigerinaceae. In, Eames, F. E. , Banner, F. T. , Blow, W. H. & Clarke, W. J. (eds) Fundamentals of mid-Tertiary Stratigraphical Correlation. Cambridge University Press, Cambridge 61-151. gs

Brönnimann, P. & Resig, J. (1971). A Neogene globigerinacean biochronologic time-scale of the southwestern Pacific. Initial Reports of the Deep Sea Drilling Project. 7(2): 1235-1469. gs

Bykova, N. K. (1960). K voprosy O tsiklichnosti filogeneticheskogo razvitiya u foraminifer. Trudy Vsesoyuznogo neftyanogo nauchno-issledovatel'skogo geologo-razvedochnogo instituta. 163: 309-336. gs

Fleisher, R. L. (1974a). Cenozoic planktonic foraminifera and biostratigraphy, Arabian Sea, Deep Sea Drilling Project, Leg 23A. Initial Reports of the Deep Sea Drilling Project. 23: 1001-1072. gs

Fleisher, R. (1975). Oligocene planktonic foraminiferal biostratigraphy, central North Pacific Ocean, DSDP Leg 32. Initial Reports of the Deep Sea Drilling Project. 32: 753-763. gs

Galeotti, S., Coccione, R. & Gersonde, R. (2002). Middle Eocene – early Pliocene subantarctic planktic foraminiferal biostratigraphy of Site 1090, Agulhas Ridge. Marine Micropaleontology. 45: 357-581. gs

Huber, B. T. (1991c). Paleogene and Early Neogene Planktonic Foraminifer Biostratigraphy of Sites 738 and 744, Kerguelen Plateau (Southern Indian Ocean). Proceedings of the Ocean Drilling Program, Scientific Results. 119: 427-449. gs

Huber, B. T., Olsson, R. K. & Pearson, P. N. (2006). Taxonomy, biostratigraphy, and phylogeny of Eocene microperforate planktonic foraminifera (Jenkinsina, Cassigerinelloita, Chiloguembelina, Streptochilus, Zeauvigerina, Tenuitella, and Cassigerinella) and Problematica (Dipsidripella). In, Pearson, P. N. , Olsson, R. K. , Hemleben, C. , Huber, B. T. & Berggren, W. A. (eds) Atlas of Eocene Planktonic Foraminifera. Cushman Foundation for Foraminiferal Research, Special Publication. 41(Chap 16): 461-508. gs

Jenkins, D. G. & Srinivasan, M. S. (1986). Cenozoic planktonic foraminifera from the equator to the sub-antarctic of the Southwest Pacific. Initial Reports of the Deep Sea Drilling Project. 90: 795-834. gs

Jenkins, D. G. (1965b). Planktonic Foraminiferal zones and new taxa from the Danian to lower Miocene of New Zealand. New Zealand Journal of Geology and Geophysics. 8(6): 1088-1126. gs

Jenkins, D. G. (1966b). Planktonic foraminiferal zones and new taxa from the Danian to lower Miocene of New Zealand. New Zealand Journal of Geology and Geophysics. 8: 1088-1126. gs

Jenkins, D. G. (1971). New Zealand Cenozoic Planktonic Foraminifera. New Zealand Geological Survey, Paleontological Bulletin. 42: 1-278. gs

Krasheninnikov, V. A. & Basov, I. A. (1983). Stratigraphy of Cretaceous sediments of the Falkland Plateau based on planktonic foraminifers, Deep Sea Drilling Project, Leg 71. Initial Reports of the Deep Sea Drilling Project. 71: 789-820. gs

Leckie, R. M. & Webb, P. -N. (1986). Late Paleogene and early Neogene foraminifers of Deep Sea Drilling Project Site 270, Ross Sea, Antarctica. Initial Reports of the Deep Sea Drilling Project. 90: 1093-1142. gs

Leckie, R. M., Farnham, C. & Schmidt, M. G. (1993). Oligocene planktonic foraminifer biostratigraphy of Hole 803D (Ontong Java Plateau) and Hole 628A (Little Bahama Bank), and comparison with the southern high latitudes. Proceedings of the Ocean Drilling Program, Scientific Results. 130: 113-136. gs

Li, Q. & Radford, S. S. (1991). Evolution and biogeography of Paleogene microperforate planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology. 83: 87-115. gs

Li, Q. (1987). Origin, phylogenetic development and systematic taxonomy of the Tenuitella plexus (Globigerinitidae, Globigerininina). Journal of Foraminiferal Research. 17: 298-320. gs

Li, Q., Radford, S. S. & Banner, F. T. (1992). Distribution of microperforate tenuitellid planktonic foraminifers in Holes 747A and 749B, Kerguelen Plateau. Proceedings of the Ocean Drilling Program, Scientific Results. 120: 569-594. gs

Li, Q., McGowran, B. & James, N. P. (2003b). Eocene–Oligocene planktonic forminiferal biostratigraphy of Sites 1126, 1130, 1132, and 1134, ODP Leg 182, Great Australian Bight. Proceedings of the Ocean Drilling Program, Scientific Results. 182: 1-28. gs

Malumian, N. & Olivero, E. B. (2006). El Grupo Cabo Domingo, Tierra del Fuego: bioestratigrafía, paleoambientes y acontecimientos del Eocene-Miocene marino. Asociación Geológica Argentina, Revista. 61: 139-160. gs

Miller, K. G. et al. (1996). Cape May Site Report. Proceedings of the Ocean Drilling Program, Scientific Results. 150X(suppl.): -. gs

Myatliuk, L. V. (1950). Stratigrafiya flishevykh osadkov severnykh Karpat v cveta dannykh fauny foraminifer [Stratigraphy of the flysch seditments of the Northern Carpathian Mountains in the light of the foraminiferal fauna.]. In, unknown (ed.) Microfauna of the USSR, 4. Proceedings of the Oil Research Geological Institute (VNIGRI). 51: 225-287. gs

Myatliuk, L. V. (1970). Foraminifera from the flysch deposits of the Eastern Carpathians (Cretaceous-Palaeogene). Vses. Neft. Nauchno-Issled. Geol-Razved. Inst (VNIGRI), Trudy. 282: 1-225. gs

Pearson, P. N. & Wade, B. S. (2009). Taxonomy and stable isotope paleoecology of well-preserved planktonic foraminifera from the uppermost Oligocene of Trinidad. Journal of Foraminiferal Research. 39: 191-217. gs

Pearson, P. N. & Wade, B. S. (2015). Systematic taxonomy of exceptionally well-preserved planktonic foraminifera from the Eocene/Oligocene boundary of Tanzania. Cushman Foundation for Foraminiferal Research, Special Publication. 45: 1-85. gs

Pearson, P. N., Wade, B. S. & Huber, B. T. (2018c). Taxonomy, biostratigraphy, and phylogeny of Oligocene Globigerinitidae (Dipsidripella, Globigerinita, and Tenuitella). In, Wade, B. S. , Olsson, R. K. , Pearson, P. N. , Huber, B. T. & Berggren, W. A. (eds) Atlas of Oligocene Planktonic Foraminifera. Cushman Foundation for Foraminiferal Research, Special Publication. 46(Chap 16): 429-458. gs

Poag, C. W. & Commeau, J. A. (1995). Paleocene to middle Miocene planktic foraminifera of the southwestern Salisbury Embayment, Virginia and Maryland: Biostratigraphy, allostratigraphy, and sequence stratigraphy. Journal of Foraminiferal Research. 25: 134-155. gs

Poore, R. Z. & Brabb, E. E. (1977). Eocene and Oligocene planktonic foraminifera from the Upper Butano sandstone and type San Lorenzo formation, Santa Cruz Mountains, California. Journal of Foraminiferal Research. 7(4): 249-272. gs

Poore, R. Z. (1984). Middle Eocene through Quaternary planktonic foraminifers from the southern Angola Basin: Deep Sea Drilling Project Leg 73,. Initial Reports of the Deep Sea Drilling Project. 73: 429-448. gs

Premoli Silva, I. & Boersma, A. (1988). Atlantic Eocene planktonic foraminiferal historical biogeography and paleohydrographic indices. Palaeogeography, Palaeoclimatology, Palaeoecology. 67: 315-356. gs

Quilty, P. G. (1976). Planktonic foraminifera DSDP Leg 34, Nazca Plate. Initial Reports of the Deep Sea Drilling Project. 34: 629-703. gs

Saito, T. & Bé, A. (1964). Planktonic foraminifera from the American Oligocene. Science. 145: 702-705. gs

Samuel, O. & Salaj, J. (1968). Microbiostratigraphy and Foraminifera of the Slovak Carpathian Paleogene. Geologicky Ustav Dionyza Stura, Bratislava. 1-232. gs

Spezzaferri, S. & Premoli Silva, I. (1991). Oligocene planktonic foraminiferal biostratigraphy and paleoclimatic interpretation from Hole 538A, DSDP Leg 77, Gulf of Mexico. Palaeogeography, Palaeoclimatology, Palaeoecology. 83: 217-263. gs

Spezzaferri, S. (1994). Planktonic foraminiferal biostratigraphy and taxonomy of the Oligocene and lower Miocene in the oceanic record. An overview. Palaeontographia Italica. 81: 1-187. gs

Stott, L. D. & Kennett, J. P. (1990). The Paleoceanographic and Paleoclimatic signature of the Cretaceous/Paleogene boundary in the Antarctic: Stable isotopic results from ODP Leg 113. Proceedings of the Ocean Drilling Program, Scientific Results. 113: 829-848. gs

Subbotina, N. N. (1953). Foraminiferes fossiles d'URSS Globigerinidae, Globorotaliidae, Hantkeninidae. Bureau de Recherches Geologiques et Minieres. 2239: 1-144. gs

Toumarkine, M. (1978). Planktonic foraminiferal biostratigraphy of the Paleogene of Sites 360 to 364 and the Neogene of Sites 362A, 363 and 364 Leg 40,. Initial Reports of the Deep Sea Drilling Project. 40: 679-721. gs

van Eijden, A. J. M. & Smit, J. (1991). Eastern Indian Ocean Cretaceous and Paleogene quantitative biostratigraphy. Proceedings of the Ocean Drilling Program, Scientific Results. 121: 77-123. gs


logo

Tenuitella gemma compiled by the pforams@mikrotax project team viewed: 16-10-2019

Taxon Search:
Advanced Search

Short stable page link: http://mikrotax.org/pforams/index.php?id=100302 Go to Archive.is to create a permanent copy of this page - citation notes



Comments (0)

No comments yet. Be the first!

Add Comment

* Required information
1000
Captcha Image
Powered by Commentics