Globorotalia (Truncorotaloides) topilensis praetopilensis Blow, 1979:1043, pl. 155: fig. 9; pl. 203: figs. 1-2 (detail of pl. 155: fig. 9) [Zone P10, KANE 9, piston-core 42, 95 cm, Endeavor Seamount, equatorial Atlantic Ocean]; pl. 169: figs. 1-9 (8=holotype), pl. 207: fig. 1 (detail of. Pl. 178: fig. 9), fig. 2 (=detail of pl. 169, fig. 7), pl. 208: figs. 1-4 (=detail of pl. 169, fig. 4), pl. 208: fig. 5 (=detail of pl., 169, fig. 7) [Zone P11, Sample RS. 24, Kilwa area, Tanzania]; pl. 178: figs. 6-9, pl. 185: figs. 7-8 [Zone P11, DSDP Hole 21A, South Atlantic Ocean]; pl. 187: figs. 1-2 and pl. 208: fig. 6 (=detail of pl. 187: fig. 2) [Zone P12, DSDP Site 19, South Atlantic Ocean]; pl. 187: figs. 3-4 [Zone P12, DSDP Hole 21A, South Atlantic Ocean].
Acarininapraetopilensis (Blow, 1979).—Pearson and others, 2004:37, pl. 2: figs. 7-9 (fig. 9 =details of muricae) [Zone P11, Tanzania Drilling Project Site 2/9/CC].
Not Acarininapraetopilensis (Blow, 1979).—Wade and others, 2001:277: figs. 3f-3h.—Wade, 2004:28, pl. 1: figs. g-h ( =A. mcgowrani)
Taxonomic discussion: Acarininapraetopilensis was named by Blow (1979) for middle Eocene descendants of A. pseudotopilensis that show more closely appressed chambers in the last whorl leading to laterally angulate chambers and enhanced circum-peripheral concentration of partially fused muricae into a muricocarina on the last chamber. [Berggren et al. 2006]
holotype: G. (Truncorotaloides) topilensis praetopilensis
holotype: G. (Truncorotaloides) topilensis praetopilensis
paratype: G. (Truncorotaloides) topilensis praetopilensis
paratype: G. (Truncorotaloides) topilensis praetopilensis
paratype: G. (Truncorotaloides) topilensis praetopilensis
paratype: G. (Truncorotaloides) topilensis praetopilensis
paratype: G. (Truncorotaloides) topilensis praetopilensis
paratype: G. (Truncorotaloides) topilensis praetopilensis
paratype: G. (Truncorotaloides) topilensis praetopilensis
paratypes: G. (Truncorotaloides) topilensis praetopilensis
paratypes: G. (Truncorotaloides) topilensis praetopilensis
paratypes: G. (Truncorotaloides) topilensis praetopilensis
paratypes: G. (Truncorotaloides) topilensis praetopilensis
x: G. (Truncorotaloides) topilensis praetopilensis
x: G. (Truncorotaloides) topilensis praetopilensis
Distinguishing features: Parent taxon (Acarinina): Moderate to low trochospire; chambers ovoid, usually 4-6 in final whorl. Wall muricate with pustules on umbilical shoulders; This taxon: Test strongly muricate, subquadrate; last chamber disjunct, cuneate to mitriform lwith heavy circum-peripheral concentration of partially fused muricae.
NB These concise distinguishing features statements are used in the tables of daughter-taxa to act as quick summaries of the differences between e.g. species of one genus. They are being edited as the site is developed and comments on them are especially welcome.
Description
Diagnostic characters: Distinguished by its strongly muricate, subquadrate test, disjunct, cuneate to mitriform last chamber which bears heavy circum-peripheral concentration of partially fused muricae. [Berggren et al. 2006] Morphology: Low-trochospiral, sutures radial, straight, sunk (depressed) between overlapping junction(s) of juxtaposed inflated chambers; umbilicus deep and wide with no circum-umbilical muricate rim/collar; weakly rimmed aperture extends towards (but does not reach) the periphery; 9-10 chambers in 2-2½ whorls on spiral side; chambers tangentially longer than radially broad; last chamber distinctly disjunct, cuneate or mitriform, subacute margin with profusion/concentration of partially fused muricae; supplementary apertures usually present between the last two chambers in well preserved individuals; spiral sutures radial to weakly curved; in edge view high, angulo-conical. [Berggren et al. 2006] Wall type: Strongly muricate, nonspinose, normal perforate. [Berggren et al. 2006] Size: Maximum diameter of holotype: 0.38mm (Blow, 1979, p. 1043). [Berggren et al. 2006]
Character matrix
test outline:
Lobate
chamber arrangement:
Trochospiral
edge view:
Inequally biconvex
aperture:
Umbilical-extraumbilical
sp chamber shape:
Inflated
coiling axis:
Low
periphery:
N/A
aperture border:
N/A
umb chbr shape:
Inflated
umbilicus:
Wide
periph margin shape:
Subangular
accessory apertures:
None
spiral sutures:
Strongly depressed
umb depth:
Deep
wall texture:
Coarsely muricate
shell porosity:
Finely Perforate: 1-2.5µm
umbilical or test sutures:
Strongly depressed
final-whorl chambers:
3-4
N.B. These characters are used for advanced search. N/A - not applicable
Biogeography and Palaeobiology
Geographic distributionWidespread distribution in Tethyan and South Atlantic regions. [Berggren et al. 2006]
Aze et al. 2011 summary: Low to middle latitudes; based on Berggren et al. (2006b) Isotope paleobiologyRelatively negative δ18O and positive δ13C indicate a mixed layer habitat. Size fraction data shows a large change in δ13C through ontogeny suggestive of a symbiotic relationship like other muricate forms (Boersma and others, 1987; Pearson and others, 1993; recorded as pseudotopilensis). [Berggren et al. 2006] Aze et al. 2011 ecogroup 1 - Open ocean mixed-layer tropical/subtropical, with symbionts. Based on very heavy _13C and relatively light _18O. Sources cited by Aze et al. 2011 (appendix S3): Boersma et al. (1987) Pearson et al. (1993) Phylogenetic relationsProbably evolved from Acarininamcgowrani n. sp. by greater lateral compression of, and concomitant concentration of partially fused muricae on, margins of last chamber, greater laxity in coiling mode and resulting larger and deeper umbilicus, and development of rimmed supplementary apertures between (at least) the last two chambers (Blow, 1979). It gave rise to Acarininatopilensis by developing a more distinctly lobate periphery, disjunct chamber margins on later chambers which exhibit pronounced cuneate or mitriform shape, stronger/heavier concentration of thick muricae on chambers of the last whorl, looser coiling resulting in even wider umbilicus than in praetopilensis and larger and greater number of supplementary apertures on spiral side. [Berggren et al. 2006]
Geological Range: Notes: to Zone E12. Zone E7 (upper part) [Berggren et al. 2006] Last occurrence (top): within E12 zone (39.97-40.40Ma, top in Bartonian stage). Data source: Eocene Atlas First occurrence (base): in mid part of E7a subzone (50% up, 49.3Ma, in Ypresian stage). Data source: Eocene Atlas
Plot of occurrence data:
Range-bar - range as quoted above, pink interval top occurs in, green interval base occurs in.
Triangles indicate an event for which a precise placement has been suggested
Histogram - Neptune occurrence data from DSDP and ODP proceedings. Pale shading <50 samples in time bin. Interpret with caution & read these notes
Primary source for this page: Berggren et al. 2006 - Eocene Atlas, chap. 9, p. 300
References:
Berggren, W. A., Pearson, P. N., Huber, B. T. & Wade, B. S. (2006b). Berggren, W. A., Pearson, P. N., Huber, B. T. & Wade, B. S. (2006). Taxonomy, biostratigraphy, and phylogeny of Eocene Acarinina. In, Pearson, P. N. , Olsson, R. K. , Hemleben, C. , Huber, B. T. & Berggren, W. A. (eds) Atlas of Eocene Planktonic Foraminifera. Cushman Foundation for Foraminiferal Research, Special Publication. 41(Chap 9): 257-326. In, Pearson, P. N., Olsson, R. K., Hemleben, C., Huber, B. T. & Berggren, W. A. (eds) Atlas of Eocene Planktonic Foraminifera. Cushman Foundation for Foraminiferal Research, Special Publication . 41(Chap 9): 257-326. gsO
Blow, W. H. (1979). Blow, W. H. (1979). The Cainozoic Globigerinida: A study of the morphology, taxonomy, evolutionary relationships and stratigraphical distribution of some Globigerinida (mainly Globigerinacea). E. J. Brill, Leiden. 2: 1-1413. E. J. Brill, Leiden. 2: 1-1413. gs
Boersma, A., Premoli Silva, I. & Shackleton, N. J. (1987). Boersma, A., Premoli Silva, I. & Shackleton, N. J. (1987). Atlantic Eocene planktonic foraminiferal paleohydrographic indicators and stable isotope paleoceanography. Paleoceanography. 2: 287-331. Paleoceanography. 2: 287-331. gs
Pearson, P. N., Shackleton, N. J. & Hall, M. A. (1993). Pearson, P. N., Shackleton, N. J. & Hall, M. A. (1993). Stable isotope paleoecology of middle Eocene planktonic foraminifera and multi-species isotope stratigraphy, DSDP Site 523, South Atlantic. Journal of Foraminiferal Research. 23: 123-140. Journal of Foraminiferal Research. 23: 123-140. gs
Pearson, P. N., et al. (2004). Pearson, P. N. et al. (2004). Paleogene and Cretaceous sediment cores from the Kilwa and Lindi areas of coastal Tanzania: Tanzania Drilling Project Sites 1-5. Journal of African Earth Sciences. 39: 25-62. Journal of African Earth Sciences. 39: 25-62. gs
Wade, B. S. (2004). Wade, B. S. (2004). Planktonic Foraminiferal biostratigraphy and mechanisms in the extinction of Morozovella in the Late Middle Eocene. Marine Micropaleontology. 51: 23-38. Marine Micropaleontology. 51: 23-38. gs
Wade, B. S., Kroon, D. & Norris, R. D. (2001). Wade, B. S., Kroon, D. & Norris, R. D. (2001). Orbitally forced climate change in the Late Middle Eocene at Blake Nose (Leg 171B): Evidence From Stable Isotopes In Foraminifera. Geological Society of London, Special Publications. 183: 273-291. Geological Society of London, Special Publications. 183: 273-291. gs
Acarinina praetopilensis compiled by the pforams@mikrotax project teamviewed: 17-6-2025