pforams@mikrotax - Catapsydrax unicavus pforams@mikrotax - Catapsydrax unicavus

Catapsydrax unicavus


Classification: pf_cenozoic -> Globigerinidae -> Catapsydrax -> Catapsydrax unicavus
Sister taxa: C. indianus, C. dissimilis, C. globiformis, C. africanus, C. howei, C. unicavus, C. sp.

Taxonomy

Citation: Catapsydrax unicavus Bolli, Loeblich&Tappan 1957
taxonomic rank: Species
Basionym: Catapsydrax unicavus
Synonyms:
Taxonomic discussion:

Catapsydrax unicavus is the most common and long-ranging species in the genus, extending from the early Eocene to early Miocene. An important aspect of our taxonomy is the resurrection of Globorotaloides suteri Bolli. In the Atlas of Eocene Planktonic Foraminifera, Globorotaloides suteri was considered a junior synonym of Catapsydrax unicavus because of similarities between the holotypes (Olsson and others, 2006a). These early images of the holotype of Globorotaloides suteri, however, were of limited quality. Based on evidence from new SEM images of the G. suteri type, which better represent the morphology of the spiral side, we now separate the two (see discussion under the Globorotaloides suteri entry). It is now clear that G. suteri has a distinctly flattened spiral side (Pl. 4.10, Figs. 5-7 and 11-13), as originally described by Bolli and others (1957). Moreover, C. unicavus has an obligate bulla whereas bullate and non-bullate forms of G. suteri occur. The type specimen of Blow and Banner’s (1962) subspecies Globigerinita unicava primitiva from the upper Eocene of Tanzania was illustrated and discussed by Pearson and Wade (2015) where it was included in synonymy with Catapsydrax unicavus Bolli, Loeblich, and Tappan, although we recognize there may be grounds for separation of the taxa based on the greater inflation of both chambers and bulla in primitiva (see Pearson and Wade, 2015, for additional discussion). Catapsydrax unicavus is common in the type region of the Oligocene Chattian and Rupelian stages in Boreal northwest Europe (Hooyberghs and De Meuter, 1972; Hooyberghs and others, 1992). The various forms from the North Sea ‘Boom Clay’ and ‘Edgdem Sands’, referred by Hooyberghs and De Meuter (1972) and Hooyberghs and others (1992) to a variety of species and subspecies of Globigerinita (including pera, scandretti, primitiva and unicavus), we now regard as C. unicavus.

In the Atlas of Eocene Planktonic Foraminifera Olsson and others (2006a) regarded Globigerina simulans Bermúdez (1961), which has a flat bulla covering the umbilical region, as a junior synonym of C. dissimilis. New SEM images of the holotype of simulans (not shown but available at the USNM collection archive), show that it has a single posterior infralaminal aperture, which is a definitive characteristic of C. unicavus.

As discussed, [see genus Catapsydrax] by including Catapsydrax parvulus Bolli, Loeblich, and Tappan of Kennett and Srinivasan (1983) in our concept of C. unicavus, the range of this species (and thus the genus Catapsydrax), extends into the upper Miocene (Zone M12). [Coxall & Spezzaferri 2018]

Catalog entries: Catapsydrax unicavus, Globigerina isahayensis, Globigerina linaperta turgida, Globigerinita unicava primitiva

Type images:

Distinguishing features:
Parent taxon (Catapsydrax): Like Globorotaloides but more compact, radially compressed, with appressed inflated chambers in the final whorl, and always with bulla
This taxon: Moderately low trochospiral, compact to slightly lobulate test; Chambers globular, embracing, increasing rapidly in size. Terminal bulla extends over the umbilicus and has 1 infralaminal aperture.

NB These concise distinguishing features statements are used in the tables of daughter-taxa to act as quick summaries of the differences between e.g. species of one genus.
They are being edited as the site is developed and comments on them are especially welcome.

Description


Morphology:
Moderately low trochospiral, compact to slightly lobulate test consisting of about 2½-3 whorls. Chambers globular, embracing, increasing rapidly in size with a terminal bulla extending over the umbilicus. The bulla may be flattened or inflated, and has a continuous, thickened imperforate rim and a single infralaminal aperture in a posterior position. The early ontogenetic whorl, comprising ~5 chambers, is somewhat flattened and typically raised slightly above the adult whorl. The adult whorl has 3-4 globular chambers increasing rapidly in size. Sutures, straight on the umbilical side, slightly curved on the spiral side and moderately depressed. The primary aperture small, semi-circular low umbilical arch, visible only when the bulla is broken or missing. The edge profile is an ovoid revealing the embracing bulla. [Coxall & Spezzaferri 2018]

Wall type:
Cancellate, sacculifer-type wall texture, generally with heavy gametogenetic calcification in adult specimens. [Coxall & Spezzaferri 2018]

Size:
Holotype maximum diameter 0.22 mm, thickness 0.17 mm. [Coxall & Spezzaferri 2018]

Character matrix
test outline:Lobatechamber arrangement:Trochospiraledge view:Inequally biconvexaperture:Umbilical
sp chamber shape:Globularcoiling axis:Lowperiphery:N/Aaperture border:Bulla
umb chbr shape:Globularumbilicus:Narrowperiph margin shape:Broadly roundedaccessory apertures:Infralaminal
spiral sutures:Moderately depressedumb depth:Deepwall texture:Spinoseshell porosity:Finely Perforate: 1-2.5µm
umbilical or test sutures:Moderately depressedfinal-whorl chambers:4-4 N.B. These characters are used for advanced search. N/A - not applicable

Biogeography and Palaeobiology


Geographic distribution

Global, including high latitudes. [Coxall & Spezzaferri 2018]

Isotope paleobiology
Catapsydrax unicavus, like other species of Catapsydrax, registers among the highest δ18O values of assemblages and lowest δ13C indicating it was a thermocline to sub-thermocline calcifier (Poore and Matthews, 1984; Arthur and others, 1989; van Eijden and Ganssen, 1995; Sexton and others, 2006; Wade and others, 2007; Pearson and Wade, 2009; Spezzaferri and Pearson 2009; Moore and others, 2014). [Coxall & Spezzaferri 2018]

Phylogenetic relations
The origin of Catapsydrax unicavus is uncertain. It probably evolved from Globorotaloides quadrocameratus in the early Eocene, which would preserve Catapsydrax as a sister clade of Globorotaloides (Olsson and others, 2006a). Another possibility is that it was derived from a subbotinid such as Subbotina cancellata (Olsson and Others, 2006b). [Coxall & Spezzaferri 2018]

Most likely ancestor: Globorotaloides quadrocameratus - at confidence level 2 (out of 5). Data source: Olsson et al. 2006 f5.1.
Likely descendants: Catapsydrax dissimilis; Catapsydrax globiformis; Catapsydrax howei; plot with descendants

Biostratigraphic distribution

Geological Range:
Notes: Lower Eocene Zone E2 (Olsson and others, 2006a) to the upper Miocene Zone M12 (= N15) (based on including C. parvulus of Kennett & Srinivasan; see taxonomic discussion above). [Coxall & Spezzaferri 2018]
Last occurrence (top): within M12 zone (9.83-10.46Ma, top in Tortonian stage). Data source: Olsson et al. 2006 f5.1
First occurrence (base): within E2 zone (55.20-55.81Ma, base in Ypresian stage). Data source: Olsson et al. 2006 f5.1

Plot of occurrence data:

Primary source for this page: Coxall & Spezzaferri 2018 - Olig Atlas chap.4 p.88; Olsson et al. 2006 - Eocene Atlas, chap. 5, p. 75

References:

Arthur, M. A., Dean, W. E., Zachos, J. C., Kaminski, M., Rieg, S. H. & Elmstrom, K. (1989). Geochemical expression of early diagenesis in middle Eocene-lower Oligocene pelagic sediments in the southern Labrador Sea, Site 647, ODP Leg 10. Proceedings of the Ocean Drilling Program, Scientific Results. 105: 111-135. gs

Asano, K. (1962). Tertiary Globigerinids from Kyushu, Japan. Science Reports of the Tohoku University. Special Volume 5: 49-65. gs

Bermudez, P. J. (1937b). Nuevas especies de Foraminiferos del Eoceno de Cuba. Memorias de la Sociedad Cubana de Historia Natural “Felipe Poey”. 11: 137-150. gs

Bermudez, P. J. (1961). Contribucion al estudio de las Globigerinidea de la region Caribe-Antillana (Paleoceno-Reciente). Editorial Sucre, Caracas. (3): 1119-1393. gs

Blow, W. H. & Banner, F. T. (1962). The mid-Tertiary (Upper Eocene to Aquitanian) Globigerinaceae. In, Eames, F. E., Banner, F. T., Blow, W. H. & Clarke, W. J. (eds) Fundamentals of mid-Tertiary Stratigraphical Correlation. Cambridge University Press, Cambridge 61-151. gs

Blow, W. H. (1969). Late middle Eocene to Recent planktonic foraminiferal biostratigraphy. In, Bronnimann, P. & Renz, H. H. (eds) Proceedings of the First International Conference on Planktonic Microfossils, Geneva, 1967. E J Brill, Leiden 380-381. gs

Blow, W. H. (1979). The Cainozoic Globigerinida: A study of the morphology, taxonomy, evolutionary relationships and stratigraphical distribution of some Globigerinida (mainly Globigerinacea). E. J. Brill, Leiden. 2: 1-1413. gs

Bolli, H. M. (1957b). Planktonic foraminifera from the Oligocene-Miocene Cipero and Lengua formations of Trinidad, B.W.I. In, Loeblich, A. R. , Jr., Tappan, H., Beckmann, J. P., Bolli, H. M., Montanaro Gallitelli & E. Troelsen, J. C. (eds) Studies in Foraminifera. U.S. National Museum Bulletin . 215: 97-123. gs

Bolli, H. M., Loeblich, A. R. & Tappan, H. (1957). Planktonic foraminiferal families Hantkeninidae, Orbulinidae, Globorotaliidae and Globotruncanidae. In, Loeblich, A. R. , Jr., Tappan, H., Beckmann, J. P., Bolli, H. M., Montanaro Gallitelli, E. & Troelsen, J. C. (eds) Studies in Foraminifera. U.S. National Museum Bulletin . 215: 3-50. gs

Brönnimann, P. & Resig, J. (1971). A Neogene globigerinacean biochronologic time-scale of the southwestern Pacific. Initial Reports of the Deep Sea Drilling Project. 7(2): 1235-1469. gs O

Brönnimann, P. (1952d). Trinidad Paleocene and lower Eocene Globigerinidae. Bulletins of American Paleontology. 34(143): 1-34. gs

Cicha, I., Rögl, F., Rupp, C. & Ctyroká, J. (1998). Oligocene-Miocene foraminifera of the central Paratethys. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft. 549: 1-325. gs

Coxall, H. K. & Spezzaferri, S. (2018). Taxonomy, biostratigraphy, and phylogeny of Oligocene Catapsydrax, Globorotaloides, and Protentelloides. In, Wade, B. S., Olsson, R. K., Pearson, P. N., Huber, B. T. & Berggren, W. A. (eds) Atlas of Oligocene Planktonic Foraminifera. Cushman Foundation for Foraminiferal Research, Special Publication . 46(Chap 4): 79-124. gs

Finlay, H. J. (1939b). New Zealand foraminifera: Key species in stratigraphy - no. 2. Transactions of the Royal Society of New Zealand. 69(1): 89-128. gs

Fleisher, R. L. (1974a). Cenozoic planktonic foraminifera and biostratigraphy, Arabian Sea, Deep Sea Drilling Project, Leg 23A. Initial Reports of the Deep Sea Drilling Project. 23: 1001-1072. gs O

Hooyberghs, H. J. F. & de Meuter, F. (1972). Biostratigraphy and inter-regional correlation of the Miocene deposits of Northern Belgium based on planktonic foraminifera; the Oligocene-Miocene boundary on the southern edge of the North Sea basin, Brussels. Koninklijke Vlaamse Academie voor Wetenschappen, Letteren en Schone Kunsten van België. -. gs

Hooyberghs, H. J. F., Vercauteren, T., De Meuter, F. & Symons, F. (1992). Foraminiferal studies in the Boom Formation. Belgische Geologische Dienst Professional Paper. 8: 26-. gs

Huber, B. T. (1991c). Paleogene and Early Neogene Planktonic Foraminifer Biostratigraphy of Sites 738 and 744, Kerguelen Plateau (Southern Indian Ocean). Proceedings of the Ocean Drilling Program, Scientific Results. 119: 427-449. gs

Jenkins, D. G. (1964). A new planktonic foraminiferal subspecies from the Australasian Lower Miocene. Micropaleontology. 10(1): 72-. gs

Kennett, J. P. & Srinivasan, M. S. (1983). Neogene Planktonic Foraminifera. Hutchinson Ross Publishing Co., Stroudsburg, Pennsylvania. 1-265. gs

Krasheninnikov, V. A. & Basov, I. A. (1983). Stratigraphy of Cretaceous sediments of the Falkland Plateau based on planktonic foraminifers, Deep Sea Drilling Project, Leg 71. Initial Reports of the Deep Sea Drilling Project. 71: 789-820. gs

Krasheninnikov, V. A. & Pflaumann, U. (1977). Zonal stratigraphy and planktonic foraminifers of Paleogene deposits of the Atlantic Ocean to the west of Africa (Deep Sea Drilling Project, Leg 41). Initial Reports of the Deep Sea Drilling Project. 41: 581-612. gs

Lam, A. & Leckie, R. M. (2020a). Late Neogene and Quaternary diversity and taxonomy of subtropical to temperate planktic foraminifera across the Kuroshio Current Extension, northwest Pacific Ocean. Micropaleontology. 66(3): 177-268. gs

Leckie, R. M., Farnham, C. & Schmidt, M. G. (1993). Oligocene planktonic foraminifer biostratigraphy of Hole 803D (Ontong Java Plateau) and Hole 628A (Little Bahama Bank), and comparison with the southern high latitudes. Proceedings of the Ocean Drilling Program, Scientific Results. 130: 113-136. gs

Loeblich, A. R. & Tappan, H. (1957b). Planktonic foraminifera of Paleocene and early Eocene Age from the Gulf and Atlantic coastal plains. In, Loeblich, A. R. , Jr., Tappan, H., Beckmann, J. P., Bolli, H. M., Montanaro Gallitelli, E. & Troelsen, J. C. (eds) Studies in Foraminifera. U.S. National Museum Bulletin . 215: 173-198. gs

Moore, T. C. et al. (2014). Equatorial Pacific Productivity Changes near the Eocene-Oligocene Boundary. Paleoceanography. 29: 825-844. gs

Olsson, R. K., Pearson, P. N. & Huber, B. T. (2006c). Taxonomy, biostratigraphy, and phylogeny of Eocene Catapsydrax, Globorotaloides, Guembelitrioides, Paragloborotalia, Parasubbotina, and Pseudoglobigerinella n. gen. In, Pearson, P. N., Olsson, R. K., Hemleben, C., Huber, B. T. & Berggren, W. A. (eds) Atlas of Eocene Planktonic Foraminifera. Cushman Foundation for Foraminiferal Research, Special Publication . 41(Chap 5): 67-110. gs O

Pearson, P. N. & Wade, B. S. (2009). Taxonomy and stable isotope paleoecology of well-preserved planktonic foraminifera from the uppermost Oligocene of Trinidad. Journal of Foraminiferal Research. 39: 191-217. gs

Pearson, P. N. & Wade, B. S. (2015). Systematic taxonomy of exceptionally well-preserved planktonic foraminifera from the Eocene/Oligocene boundary of Tanzania. Cushman Foundation for Foraminiferal Research, Special Publication. 45: 1-85. gs

Poore, R. Z. & Matthews, R. K. (1984). Oxygen isotope ranking of late Eocene and Oligocene planktonic foraminifers: implications for Oligocene sea-surface temperatures and global ice-volume. Marine Micropaleontology. 9: 111-134. gs

Quilty, P. G. (1976). Planktonic foraminifera DSDP Leg 34, Nazca Plate. Initial Reports of the Deep Sea Drilling Project. 34: 629-703. gs O

Sexton, P. E., Wilson, P. A. & Pearson, P. N. (2006). Palaeoecology of late middle Eocene planktic foraminifera and evolutionary implications. Marine Micropaleontology. 60: 1-16. gs

Spezzaferri, S. (1994). Planktonic foraminiferal biostratigraphy and taxonomy of the Oligocene and lower Miocene in the oceanic record. An overview. Palaeontographia Italica. 81: 1-187. gs

Stainforth, R. M., Lamb, J. L., Luterbacher, H., Beard, J. H. & Jeffords, R. M. (1975). Cenozoic planktonic foraminiferal zonation and characteristics of index forms. University of Kansas Paleontological Contributions, Articles. 62: 1-425. gs O

Todd, R. (1957). Smaller foraminifera, in Geology of Saipan, Mariana Islands, Pt. 3, Paleontology. U.S. Geological Survey, Professional Paper. 280-H: 265-320. gs O

van Eijden, A. J. M. & Ganssen, G. M. (1995). An Oligocene multi-species foraminiferal oxygen and carbon isotope record from ODP Hole 758A (Indian Ocean): paleoceanographic and paleo-ecologic implications. Marine Micropaleontology. 25: 47-65. gs

Wade, B. S., Berggren, W. A. & Olsson, R. K. (2007). The biostratigraphy and paleobiology of Oligocene planktonic foraminifera from the Equatorial Pacific Ocean (ODP Site 1218). Marine Micropaleontology. 62: 167-179. gs


logo

Catapsydrax unicavus compiled by the pforams@mikrotax project team viewed: 19-9-2024

Taxon Search:
Advanced Search

Short stable page link: https://mikrotax.org/pforams/index.php?id=100052 Go to Archive.is to create a permanent copy of this page - citation notes



Add Comment

* Required information
Captcha Image
Powered by Commentics

Comments

No comments yet. Be the first!