Hornibrook (1990) studied primary types of Palmer’s species and illustrated two specimens under SEM. These clearly show well-developed longitudinal costae which he contrasted with specimens of C. ototara from New Zealand. However, when poorly preserved it is very difficult to distinguish C. ototara, C. cubensis and C. adriatica. In this case it is necessary to make SEM images and compare fine wall texture details. In well-preserved material it is easier to distinguish costate forms of C. cubensis and C. adriatica from finely pustulose C. ototara or the smooth test surface at C. andreae. Under light microscope, the costate surface is better distinguished in C. cubensis than in C. adriatica which have more discontinuous costae. In addition, C. cubensis specimens possess longer and narrower tests whereas C. adriatica is usually characterized by shorter and wider outline. See Huber and others (2006) for expanded synonymy and previous remarks on this species. [Premec Fucek et al. 2018]
The type descriptions of both Guembelina garretti Howe and Guembelina barnardi Ansary refer to longitudinal striations on the test, hence both are probably referable to this taxon pending further study. Poore and Gosnell (1985) placed C. cubensis in Streptochilus based on observation of an internal plate connecting the foramina of all but the final two chambers. Resig (1993) tentatively reassigned C. cubensis to Chiloguembelina noting that its aperture is typically lower arched and the position of the internal plate is off-centered compared to species of Streptochilus. Observation of costae in this species may require use of an SEM. [Huber et al. 2006]
Catalog entries: Guembelina cubensis, Guembelina barnardi, Guembelina garretti
Type images:Distinguishing features:
Parent taxon (Chiloguembelina): Test subtriangular in outline, biserial throughout or rarely with multiserial final chambers; aperture a simple arched opening at base of the final chamber, with a narrow rim on one margin and a broad collar or flange directed toward one of the flat sides of the test, lacking an infolded margin or internal plate. Rarely with multiple apertures.
This taxon: Like C. ototara but with fine costae parallel to the long axis of the test.
Distinguished from Chiloguembelina adriatica by its smaller apical angle, greater number of chambers, moderate increase in chamber size and generally more elongated and narrower test. It differs from Chiloguembelina ototara by the presence of fine, generally continuous costae that are aligned parallel to the elongate axis of the test [Premec Fucek et al. 2018]
Diagnostic characters:
Morphology:
Wall type:
Size of measured populations: Mid-latitude (Adriatic Sea): Length 0.12-0.21 mm; width 0.07-0.12 mm; breadth 0.06-0.07 mm. Low latitude (Syria): Length 0.16-0.22 mm; width 0.08-0.12 mm; breadth 0.06-0.08 mm.
[Premec Fucek et al. 2018]Character matrix
test outline: | Triangular | chamber arrangement: | Biserial | edge view: | Equally biconvex | aperture: | Interiomarginal |
sp chamber shape: | Globular | coiling axis: | N/A | periphery: | N/A | aperture border: | Thin lip |
umb chbr shape: | Globular | umbilicus: | N/A | periph margin shape: | Broadly rounded | accessory apertures: | None |
spiral sutures: | Moderately depressed | umb depth: | N/A | wall texture: | Finely costate | shell porosity: | Microperforate: <1µm |
umbilical or test sutures: | Moderately depressed | final-whorl chambers: | 2-2 | N.B. These characters are used for advanced search. N/A - not applicable |
Geographic distribution
Isotope paleobiology
Phylogenetic relations
Most likely ancestor: Chiloguembelina ototara - at confidence level 3 (out of 5). Data source: Huber et al. 2006, f16.2.
Likely descendants: Chiloguembelina adriatica;
plot with descendants
Geological Range:
Notes: Middle Eocene Zone E10 through upper Oligocene Zone O7. Many authors identified C. cubensis from Eocene sediments (Beckmann, 1957; Resig, 1993; Li and others, 2003; Huber and others, 2006; Luciani and others, 2010). In the middle and late Eocene C. cubensis was rare and had a patchy distribution, but its abundance increased and became cosmopolitan by the early Oligocene. The highest common occurrence (HCO) of this species defines the base of Zone O5. At that level it disappears in some places and in others there is a patchy distribution above (King and Wade, 2017).
Beckmann (1957) recorded the highest occurrence (HO) of C. cubensis in the Globorotalia opima opima Zone of Trinidad, and Berggren and others (1995) placed its “last common occurrence” at the top of Subzone P21a (=Zone O3/O4) in mid-Chron 10, at 28.5 Ma. Wade and others (2007) revised this datum to 28.4 Ma. Hornibrook (1990) records continuous occurrences of C. cubensis into the upper Oligocene of New Zealand and lowermost Miocene of Chatham Island. Pearson and Chaisson (1997) observed an abrupt extinction of C. cubensis on Ceara Rise at the end of Zone O4, while Leckie and others, (1993) reported this species in the equivalent of Zone O6 at ODP Holes 803D and 807A, supporting Hornibrook’s (1990) observations. From the Umbria-Marche region, Central Italy, Coccioni and others (2008, 2013) reported the last common occurrence of C. cubensis at the end of Zone O4, and last appearance of this species at the end of Zone O5. Alegret and others (2008) observed the HO of C. cubensis in the Fuente Caldera section in Spain in Zone O4.
In this study, we confirm that the HCO of C. cubensis is a useful biohorizon that defines the base of Zone O5. However, the species sporadically continues in very rare abundance up to the latest Oligocene at low latitudes (Syria, Palmyride region; Pl. 17.3, Fig. 15). Above the HCO in Zone O4 at mid-latitudes (Adriatic Sea, Alpine-Mediterranean region) this species become rare and sporadic and last occurs at the end of Zone O5. These data are consistent with the study of Boersma and Premoli Silva (1989) who reported that following a peak near the end of Subzone P21a (= Zone O3/O4), biserial heterohelicids become rare in all but lower latitudes and a few, warm mid-latitude areas (i.e., Gulf of Mexico and Rio Grande Rise in the warm Brazil Current). In most other regions of the Atlantic and its surrounding seas, biserial heterohelicids are absent from Subzone P21b (=Zone O5) to the end of the Oligocene.
[Premec Fucek et al. 2018]Plot of occurrence data:
Primary source for this page: Premec Fucek et al. 2018 - Olig Atlas chap.17 p.468; Huber et al. 2006 - Eocene Atlas, chap. 16, p. 473
Alegret, L., L. E. , C., Fenero, R., Molina, E. O. , S. & Thomas, E. (2008). Effects of the Oligocene climatic events on the foraminiferal record from Fuente Caldera section (Spain, western Tethys). Palaeogeography Palaeoclimatology Palaeoecology. 269: 94-102. gs Ansary, S. E. (1955). Report on the foraminiferal fauna from the Upper Eocene of Egypt. Publications de l'Institut du Désert d'Egypte. 6: 1-160. gs Barrera, E. & Huber, B. T. (1991). Paleogene and early Neogene oceanography of the southern Indian Ocean: Leg 119 foraminifer stable isotope results. Proceedings of the Ocean Drilling Program, Scientific Results. 119: 693-717. gs Barrera, E. & Huber, B. T. (1993). Eocene to Oligocene oceanography and temperatures in the Antarctic Indian Ocean. In, Kennett, J. P. & Warnke, D. A. (eds) The Antarctic Paleoenviroment: A perspective on global change. Antarctic Research Series (AGU) . 60: 49-65. gs Beckmann, J. P. (1957). Chiloguembelina Loeblich and Tappan and related foraminifera from the Lower Tertiay of Trinidad, B.W.I. In, Loeblich, A. R. , Jr., Tappan, H., Beckmann, J. P., Bolli, H. M., Montanaro Gallitelli & E. Troelsen, J. C. (eds) Studies in Foraminifera. U.S. National Museum Bulletin . 215: 83-95. gs Boersma, A. & Premoli Silva, I. (1989). Atlantic Paleogene biserial heterohelicid foraminifera and oxygen minima. Paleoceanography. 4: 271-286. gs Coccioni, R., et al. (2008). Integrated stratigraphy of the Oligocene pelagic sequence in the Umbria-Marche basin (Northeastern Apennines, Italy): A potential Global Stratotype Section and Point (GSSP) for the Rupelian/Chattian boundary. Geological Society of America, Bulletin. 120: 487-511. gs Hernitz Kucenjak, M., Premec Fucek, V., Slavkovic, R. & Mesic, I. A. (2006). Planktonic foraminiferal biostratigraphy of the late Eocene and Oligocene in the Palmyride area, Syria. Geologia Croatica. 59: 19-39. gs Hornibrook, N. d. B. (1990). Chiloguembelina cubensis (Palmer) and C. ototara (Finlay), in New Zealand. Journal of Foraminiferal Research. 20(4): 368-371. gs Howe, H. V. (1939). Louisiana Cook Mountain Eocene foraminifera. Bulletin of the Geological Survey of Louisiana. 14: 1-122. gs Huber, B. T. (1991c). Paleogene and Early Neogene Planktonic Foraminifer Biostratigraphy of Sites 738 and 744, Kerguelen Plateau (Southern Indian Ocean). Proceedings of the Ocean Drilling Program, Scientific Results. 119: 427-449. gs Huber, B. T., Olsson, R. K. & Pearson, P. N. (2006). Taxonomy, biostratigraphy, and phylogeny of Eocene microperforate planktonic foraminifera (Jenkinsina, Cassigerinelloita, Chiloguembelina, Streptochilus, Zeauvigerina, Tenuitella, and Cassigerinella) and Problematica (Dipsidripella). In, Pearson, P. N., Olsson, R. K., Hemleben, C., Huber, B. T. & Berggren, W. A. (eds) Atlas of Eocene Planktonic Foraminifera. Cushman Foundation for Foraminiferal Research, Special Publication . 41(Chap 16): 461-508. gs O Jenkins, D. G. & Srinivasan, M. S. (1986). Cenozoic planktonic foraminifera from the equator to the sub-antarctic of the Southwest Pacific. Initial Reports of the Deep Sea Drilling Project. 90: 795-834. gs Jenkins, D. G. (1971). New Zealand Cenozoic Planktonic Foraminifera. New Zealand Geological Survey, Paleontological Bulletin. 42: 1-278. gs Kelly, D. C., Norris, J. C. & Nederbragt, A. J. (2003). Deciphering the paleoceanographic significance of Early Oligocene Braarudosphaera chalks in the South Atlantic. Marine Micropaleontology. 49: 49-63. gs King, D. J. & Wade, B. S. (2017). The extinction of Chiloguembelina cubensis in the Pacific Ocean: implications for defining the base of the Chattian (upper Oligocene). Newsletters on Stratigraphy. 50: 297-309. gs Leckie, R. M., Farnham, C. & Schmidt, M. G. (1993). Oligocene planktonic foraminifer biostratigraphy of Hole 803D (Ontong Java Plateau) and Hole 628A (Little Bahama Bank), and comparison with the southern high latitudes. Proceedings of the Ocean Drilling Program, Scientific Results. 130: 113-136. gs Li, Q., McGowran, B. & James, N. P. (2003b). Eocene–Oligocene planktonic forminiferal biostratigraphy of Sites 1126, 1130, 1132, and 1134, ODP Leg 182, Great Australian Bight. Proceedings of the Ocean Drilling Program, Scientific Results. 182: 1-28. gs Luciani, V., Giusberti, L., Agnini, C. F. , E., Rio, D., Spofforth, J. A. & Pälike, H. (2010). Ecological and evolutionary response of Tethyan planktonic foraminifera to the middle Eocene climatic optimum (MECO) from the Alano section (NE Italy). Palaeogeography Palaeoclimatology Palaeoecology. 298: 82-95. gs Malumian, N., Jannou, G. & Náñez, C. (2009). Serial planktonic foraminifera from the Paleogene of the Tierra del Fuego Island, South America. Journal of Foraminiferal Research. 39: 316-321. gs Olsson, R. K., Hemleben, C., Huber, B. T. & Berggren, W. A. (2006a). Taxonomy, biostratigraphy, and phylogeny of Eocene Globigerina, Globoturborotalita, Subbotina, and Turborotalita. In, Pearson, P. N., Olsson, R. K., Hemleben, C., Huber, B. T. & Berggren, W. A. (eds) Atlas of Eocene Planktonic Foraminifera. Cushman Foundation for Foraminiferal Research, Special Publication . 41(Chap 6): 111-168. gs O Palmer, D. K. (1934). The Foraminiferal Genus Guembelina in the Tertiary of Cuba. Memorias de la Sociedad Cubana de Historia Natural “Felipe Poey”. 8(2): 73-76. gs Pearson, P. N. & Chaisson, W. P. (1997). Late Paleocene to middle Miocene planktonic foraminifer biostratigraphy, Ceara Rise. Proceedings of the Ocean Drilling Program, Scientific Results. 154: 33-68. gs Pearson, P. N. & Wade, B. S. (2015). Systematic taxonomy of exceptionally well-preserved planktonic foraminifera from the Eocene/Oligocene boundary of Tanzania. Cushman Foundation for Foraminiferal Research, Special Publication. 45: 1-85. gs Poore, R. Z. & Gosnell, L. B. (1985). Apertural features and surface texture of upper Paleogene biserial planktonic foraminifers: Links between Chiloguembelina and Streptochilus. Journal of Foraminiferal Research. 15: 1-5. gs Poore, R. Z. & Matthews, R. K. (1984). Oxygen isotope ranking of late Eocene and Oligocene planktonic foraminifers: implications for Oligocene sea-surface temperatures and global ice-volume. Marine Micropaleontology. 9: 111-134. gs Premec Fucek, V., Hernitz Kucenjak, M. & Huber, B. T. (2018). Taxonomy, biostratigraphy, and phylogeny of Oligocene Chiloguembelina and Jenkinsina. In, Wade, B. S., Olsson, R. K., Pearson, P. N., Huber, B. T. & Berggren, W. A. (eds) Atlas of Oligocene Planktonic Foraminifera. Cushman Foundation for Foraminiferal Research, Special Publication . 46(Chap 17): 459-480. gs Resig, J. M. (1993). Cenozoic stratigraphy and paleoceanography of biserial planktonic foraminifers, Ontong Java Plateau. Proceedings of the Ocean Drilling Program, Scientific Results. 130: 231-244. gs Spezzaferri, S. & Premoli Silva, I. (1991). Oligocene planktonic foraminiferal biostratigraphy and paleoclimatic interpretation from Hole 538A, DSDP Leg 77, Gulf of Mexico. Palaeogeography Palaeoclimatology Palaeoecology. 83: 217-263. gs Spezzaferri, S. (1994). Planktonic foraminiferal biostratigraphy and taxonomy of the Oligocene and lower Miocene in the oceanic record. An overview. Palaeontographia Italica. 81: 1-187. gs Wade, B. S. & Kroon, D. (2002). Middle Eocene regional climate instability: Evidence from the western North Atlantic. Geology. 30: 1011-1014. gs Wade, B. S., Berggren, W. A. & Olsson, R. K. (2007). The biostratigraphy and paleobiology of Oligocene planktonic foraminifera from the Equatorial Pacific Ocean (ODP Site 1218). Marine Micropaleontology. 62: 167-179. gs Zachos, J. C., Berggren, W. A., Aubry, M. -P. & Mackensen, A. (1992b). Isotope and trace element geochemistry of Eocene and Oligocene foraminifers from Site 748, Kerguelen Plateau. Proceedings of the Ocean Drilling Program, Scientific Results. 120: 839-854. gsReferences:
![]() |
Chiloguembelina cubensis compiled by the pforams@mikrotax project team viewed: 28-4-2025
Short stable page link: https://mikrotax.org/pforams/index.php?id=100055 Go to Archive.is to create a permanent copy of this page - citation notes |