Sub-taxa & variants (time control age-window is: 0-800Ma) | ||||
Globigerinoides ruber subsp. albus G. ruber white | ||||
Globigerinoides ruber subsp. ruber G. ruber pink |
The name ruber is from the colour of the pink chromotype, the taxonomic significance of the colouration was long doubted but molecular genetic data has strongly supported separation of these two types as discrete species (Aurahs et al. 2011, Morard et al. 2019).
The pink form first occurs in the fossil record at ca 750ka and disappears from the Indian and Pacific Oceans at ca 120ka (Thompson et al. 1979).
Morphological variants:
Catalog entries: Globigerina rubra, Globigerina bulloides rubra pyramidalis
Type images:Distinguishing features:
Parent taxon (Globigerinoides): Supplementary apertures, with ruber/sacculifer-type spinose wall texture
This taxon: 3 subspherical chambers in final whorl; primary and supplementary apertures, symmetrically placed above a suture.
Morphology:
Wall type:
Character matrix
test outline: | Lobate | chamber arrangement: | Trochospiral | edge view: | Equally biconvex | aperture: | Umbilical |
sp chamber shape: | Globular | coiling axis: | Moderate-high | periphery: | N/A | aperture border: | Thin lip |
umb chbr shape: | Globular | umbilicus: | Wide | periph margin shape: | Broadly rounded | accessory apertures: | Sutural |
spiral sutures: | Strongly depressed | umb depth: | Deep | wall texture: | Cancellate | shell porosity: | Macroperforate: >2.5µm |
umbilical or test sutures: | Strongly depressed | final-whorl chambers: | 3-3 | N.B. These characters are used for advanced search. N/A - not applicable |
In modern oceans an abundant, warm water, species [SCOR WG138] Gs. ruber is easily distinguished by the position of the primary and supplementary sutural apertures, which are always symmetrically placed above the suture between two earlier chambers. During the Pleistocene to Recent, Gs. ruber shows a wide range of variation in the height of the spire and tightness of the test coiling. Several taxa have been recognized to reflect these variations - for instance, Gs. pyramidalis (van Den Broeck) for forms with a high trochospire, Gs. elongatus (d'Orbigny, 1826) for forms with tightly coiled trochospire , and Gs. cyclostomus (Galloway and Wissler, 1927) for forms with a more compact test and relatively small aperture. We consider all of these forms to be phenotypic variants of G. ruber. We believe that Gs. ruber evolved from Gs. subquadratus during the late Middle Miocene Zone N15. Instead, Blow (1969) suggested the ancestry of Gs. ruber to be from Gs. bolli within Zone N16 (Late Miocene), and Cordey (1967) suggested that Gs. obliquus was the ancestral form of Gs. ruber. [Kennett & Srinivasan 1983]
Similar species
Geographic distribution
Isotope paleobiology
Phylogenetic relations
NB G. ruber IIa is now regarded as a separate species, G. elongatus, following Aurahs et al. (2011). Genotypes G. ruber Ia, Ib, Ib2 & IIb are all characteristic of G. ruber white (Aurahs et al. 2011).
Most likely ancestor: Globigerinoides subquadratus - at confidence level 3 (out of 5). Data source: Kennett & Srinivasan 1983, fig. 10.
Likely descendants: Globigerinoides conglobatus; Globigerinoides seigliei;
plot with descendants
Geological Range:
Last occurrence (top): Extant. Data source: present in the plankton (SCOR WG138). NB The pink form is absent in the Pacific from 0.12Ma (Wade et al. 2011)
First occurrence (base): within N14 zone (10.46-11.63Ma, base in Serravallian stage). Data source: Chaisson & Pearson (1997)
Plot of occurrence data:
Primary source for this page: Kennett & Srinivasan 1983, p.78
Aurahs, R., Grimm, G. W., Hemleben, V., Hemleben, C. & Kucera, M. (2009b). Geographical distribution of cryptic genetic types in the planktonic foraminifer Globigerinoides ruber. Molecular Ecology. 18: 1692-1706. gs Aurahs, R., Treis, Y., Darling, K. & Kucera, M. (2011). A revised taxonomic and phylogenetic concept for the planktonic foraminifer species Globigerinoides ruber based on molecular and morphometric evidence. Marine Micropaleontology. 79: 1-14. gs Aze, T. et al. (2011). A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biological Reviews. 86: 900-927. gs Blow, W. H. (1969). Late middle Eocene to Recent planktonic foraminiferal biostratigraphy. In, Bronnimann, P. & Renz, H. H. (eds) Proceedings of the First International Conference on Planktonic Microfossils, Geneva, 1967. E J Brill, Leiden 380-381. gs Brummer, G-J. A. & Kucera, M. (2022). Taxonomic review of living planktonic foraminifera. Journal of Micropalaeontology. 41: 29-74. gs Cordey, W. G. (1967). The development of Globigerinoides ruber (D'Orbigny 1839) from the Miocene to Recent. Palaeontology. 10(4): 647-659. gs d'Orbigny, A. (1826). Tableau methodique de la Classe de Cephalopodes. Annales des Sciences Naturelles, Paris. 7: 245-314. gs d'Orbigny, A. (1839a). Foraminiferes. In, de la Sagra, R. (ed.) Histoire physique et naturelle de l'Ile de Cuba. A. Bertrand, Paris, France 1-224. gs Darling, K. F. & Wade, C. M. (2008). The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes. Marine Micropaleontology. 67: 216-238. gs Darling, K. F., Wade, C. M., Kroon, D. & Brown, A. J. L. (1997). Planktic foraminiferal molecular evolution and their polyphyletic origins from benthic taxa. Marine Micropaleontology. 30: 251-266. gs Galloway, J. J. & Wissler, S. G. (1927). Pleistocene foraminifera from the Lomita Quarry, Palos Verdes Hills, California. Journal of Paleontology. 1(1): 35-87. gs Keller, G. (1985). Depth stratification of planktonic foraminifers in the Miocene Ocean. In, Kennett, J. P. (ed.) The Miocene Ocean: Paleoceanography and Biogeography. GSA Memoir . 163: 1-337. gs Kennett, J. P. & Srinivasan, M. S. (1983). Neogene Planktonic Foraminifera. Hutchinson Ross Publishing Co., Stroudsburg, Pennsylvania. 1-265. gs Lam, A. & Leckie, R. M. (2020a). Late Neogene and Quaternary diversity and taxonomy of subtropical to temperate planktic foraminifera across the Kuroshio Current Extension, northwest Pacific Ocean. Micropaleontology. 66(3): 177-268. gs Latas, M., Pearson, P. N., Poole, C. R., Fabbrini, A. & Wade, B. S (2023). Globigerinoides rublobatus – a new species of Pleistocene planktonic foraminifera . Journal of Micropalaeontology. 42: 57-81. gs O Loeblich, A. & Tappan, H. (1994). Foraminifera of the Sahul shelf and Timor Sea. Cushman Foundation for Foraminiferal Research, Special Publication. 31: 1-661. gs O Morard, R. et al. (2019a). Genetic and morphological divergence in the warm-water planktonic foraminifera genus Globigerinoides. PLoS One. 14(12): 1-30. gs Pearson, P. N. & Shackleton, N. J. (1995). Neogene multispecies planktonic foraminifer stable isotope record, Site 871, Limalok Guyot. Proceedings of the Ocean Drilling Program, Scientific Results. 144: 401-410. gs Pearson, P. N. et al. (2001a). Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature. 413: 481-487. gs Postuma, J. A. (1971). Manual of planktonic foraminifera. Elsevier for Shell Group, The Hague. 1-406. gs Seears, H. A., Darling, K. F. & Wade, C. M. (2012). Ecological partitioning and diversity in tropical planktonic foraminifera. BMC Evolutionary Biology. 12(54): 1-15. gs Thompson, P. R., Be, A. W. H., Duplessy, J. C. & Shackleton, N. J. (1979). Disappearance of pink pigmented Globigerinoides ruber at 120, 000 yr BP in the Indian and Pacific Oceans. Nature. 280: 554-558. gs Ujiié, Y. & Lipps, J. H. (2009). Cryptic diversity in planktonic foraminifera in the northwest Pacific ocean. Journal of Foraminiferal Research. 39: 145-154. gs van den Broeck, E. (1876). Etude sur les Foraminiferes de la Barbade. (Antilles). Annales de la Société Belgique de Microscopie. 2: 55-152. gs References:
Globigerinoides ruber compiled by the pforams@mikrotax project team viewed: 11-9-2024
Short stable page link: https://mikrotax.org/pforams/index.php?id=104066 Go to Archive.is to create a permanent copy of this page - citation notes |