pforams@mikrotax - Neogloboquadrina pachyderma pforams@mikrotax - Neogloboquadrina pachyderma

Neogloboquadrina pachyderma


Classification: pf_cenozoic -> Globorotaliidae -> Neogloboquadrina -> Neogloboquadrina pachyderma
Sister taxa: N. pachyderma, N. incompta, N. inglei ⟩⟨ N. dutertrei, N. humerosa, N. acostaensis, N. atlantica, N. sp.

Taxonomy

Citation: Neogloboquadrina pachyderma (Ehrenberg, 1862)
taxonomic rank: species
Basionym: Aristerospira pachyderma Ehrenberg, 1862 [NB Type designated by Banner & Blow 1960
Synonyms:
Variants:
Taxonomic discussion: The left and right coiling forms were regarded as ecophenotypes for a long period and indeed featured as textbook examples of ecophenotypic variation. However, they are now known from field observations (Brummer & Kroon 1988) and molecular genetic studies to be distinct species (Darling et al. 2006). N. pachyderma is the left coilng / sinistral form whilst the right coiling, warmer water form is now named N. incompta.
The type specimens were designated by Banner & Blow 1960.

Catalog entries: Aristerospira pachyderma, Globigerina bulloides borealis, Globorotalia pseudopachyderma, Globigerina paraobesa, Globigerina polusi, Globigerina cryophila, Globigerina occlusa

Type images:

Distinguishing features:
Parent taxon (Neogloboquadrina): Cancellate wall; umbilical-extraumbilical aperture:
This taxon: Test low trochospiral, quadrate (4 to 4½ chambers in the final whorl) umbilicus narrow, deep; Predominantly sinistral coiling

NB These concise distinguishing features statements are used in the tables of daughter-taxa to act as quick summaries of the differences between e.g. species of one genus.
They are being edited as the site is developed and comments on them are especially welcome.

Description


Morphology:
Test low trochospiral, equatorial periphery slightly lobulate axial periphery rounded; chambers spherical to ovate, 4 to 4½ chambers in the final whorl, increasing rapidly in size as added; closely embracing, final chamber irregular, often a kummerform; sutures on both spiral and umbilical sides radial, depressed; surface distinctly cancellate, thickened specimens have surface covered with euhedral calcite crystals giving rosette pattern surface; umbilicus narrow, deep; aperture interiomarginal, umbilical-extraumbilical, a rather low arch with a thick apertural rim. [Kennett & Srinivasan 1983]

Wall type:
Non-spinose; Cancellate [Aze 2011]

Size:
>150µm

Character matrix
test outline:Lobatechamber arrangement:Trochospiraledge view:Equally biconvexaperture:Umbilical-extraumbilical
sp chamber shape:Globularcoiling axis:Lowperiphery:N/Aaperture border:Thick lip
umb chbr shape:Globularumbilicus:Narrowperiph margin shape:Broadly roundedaccessory apertures:None
spiral sutures:Weakly depressedumb depth:Deepwall texture:Cancellateshell porosity:Macroperforate: >2.5µm
umbilical or test sutures:Moderately depressedfinal-whorl chambers:4-4.5 N.B. These characters are used for advanced search. N/A - not applicable

Biogeography and Palaeobiology


Geographic distribution

Polar to warm subtropical. [Kennett & Srinivasan 1983] Low to high latitudes [Aze et al. 2011, based on Kennett & Srinivasan (1983)]

In modern oceans an abundant, polar water, species [SCOR WG138]

Map of distribution from ForCenS database

Isotope paleobiology
Aze et al. 2011 ecogroup 5 - High-latitude. Based on occurrence predominantly in high-latitude sites. Sources cited by Aze et al. 2011 (appendix S3): Vergnaud-Grazzini (1976)

Phylogenetic relations
In the past few years, various workers have assigned N pachyderma to Globorotalia (Jenkins, 1967), Turborotalia (Bandy, 1972), and Neogloboquadrina (Collen and Vella, 1973). Bé and Tolderlund (1971) have suggested that N pachyderma should be placed in yet another genus, Globoquadrina. Because of the identical surface ultrastructure observed in the dextral, cool subtropical form of N. pachyderma and N. dutertrei and because of the intergradation between N. pachyderma and N. dutertrei in cool to warm subtropical areas, pachyderma is here treated as belonging to Neogloboquadrina.
This species exhibits a wide range of variation in shape, size of final chamber, position of aperture, and test thickening. Kennett (1968) observed a dominance of 4 chambered, sinistral morphotypes in high latitudes, which were gradually replaced by a 4½ chambered, morphotype in Subantarctic latitudes. This in turn grades into dominantly dextral, 4 chambered forms in the temperate areas [=N. incompta].
Surface ultrastructural studies of N. pachyderma by Kennett and Srinivasan (1980) revealed two principal surface types: reticulate microcrystalline ultrastructure, which predominates in Arctic and Subantarctic populations, and crystalline ultrastructure, which dominates in populations from other areas. Overall similarity in ultrastructure within N. pachyderma links subtropical populations with temperate populations from late Miocene to Recent as one phylogenetic species that evolved from N. continuosa in the earliest Late Miocene. Identical surface ultrastructure and morphological intergradation between N. pachyderma and N. dutertrei populations in subtropical sequences suggest that the two forms are genetically linked. [Kennett & Srinivasan 1983]

Molecular Genotypes recognised (data from PFR2 database, June 2017). References: Darling et al. 2000; Darling et al. 2003; Darling et al. 2004; Darling et al. 2006; Darling & Wade 2008. [NB separation of N. dutertrei and N. incompta  from N. pachyderma is strongly supported in these molecular gentic studies]  

Most likely ancestor: Paragloborotalia continuosa - at confidence level 3 (out of 5). Data source: Kennett & Srinivasan 1983, fig 21; Aze et al. 2011.
Likely descendants: Neogloboquadrina incompta; Neogloboquadrina inglei; plot with descendants

Biostratigraphic distribution

Geological Range:
Last occurrence (top): Extant. Data source: present in the plankton (SCOR WG138)
First occurrence (base): within N16 zone (8.58-9.83Ma, base in Tortonian stage). Data source: Chaisson & Pearson (1997)

Plot of occurrence data:

Primary source for this page: Kennett & Srinivasan 1983, p.192

References:

Bandy, O. L. (1972). Origin and development of Globorotalia (Turborotalia) pachyderma (Ehrenberg). Micropaleontology. 18(3): 294-318. gs

Banner, F. T. & Blow, W. H. (1960a). Some primary types of species belonging to the superfamily Globigerinaceae. Contributions from the Cushman Foundation for Foraminiferal Research. 11: 1-41. gs O

Bé, A. W. H. & Tolderlund, D. S. (1971). Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian Oceans. In, Funnell, B. M. & Riedel, W. R. (eds) Micropaleontology of Oceans. Cambridge Univ. Press, Cambridge, UK 105-149. gs

Brummer, G. J. A. & Kroon, D. (1988). Planktonic foraminifers as tracers of ocean-climate history. Free University Press, Amsterdam. 1-346. gs

Brummer, G. J. A. & Kucera, M. (2015). Taxonomy of extant planktonic foraminifera, SCOR/IGBP WG138; August 2015. In, Spero, H. & Kucera, M. (eds) SCOR/IGBP Working Group 138: Planktonic Foraminifera and Ocean Changes. Final Workshop & Short Course on Culturing Planktonic Foraminifera. California 8-9. gs

Chaisson, W. P. & Pearson, P. N. (1997). Planktonic foraminifer biostratigraphy at Site 925: Middle Miocene–Pleistocene. Proceedings of the Ocean Drilling Program, Scientific Results. 154: 3-31. gs

Collen, I. D. & Vella, P. (1973). Pliocene planktonic foraminifera, southern North Island, New Zealand,. Journal of Foraminiferal Research. 3(1): 13-29. gs

Darling, K. F. & Wade, C. M. (2008). The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes. Marine Micropaleontology. 67: 216-238. gs

Darling, K. F., Wade, C. M., Stewart, I. A., Kroon, D., Dingle, R. & Brown, A. J. (2000). Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers. Nature. 405: 43-47. gs

Darling, K. F., Kucera, M., Wade, C. M. , von Langen, P. & Pak, D. (2003). Seasonal distribution of genetic types of planktonic foraminifer morphospecies in the Santa Barbara Channel and its paleoceanographic implications. Paleoceanography. 18: 1-11. gs

Darling, K. F., Kucera, M., Pudsey, C. J. & Wade, C. M. (2004). Molecular evidence links cryptic diversification in polar planktonic protists to Quaternary climate dynamics. Proceedings of the National Academy of Sciences, USA. 101: 7657-7662. gs

Darling, K. F., Kucera, M., Kroon, D. & Wade, C. M. (2006). A resolution for the coiling direction paradox in Neogloboquadrina pachyderma. Paleoceanography. 21: A2011-. gs

Ehrenberg, C. G. (1862). Elemente des tiefen Meeresgrundes in Mexikanischen Golfstrome bei Florida: Ober die Tiefgrund-Verhaltnisse des Oceans am Eingange der Davisstrasse und bei Island. Monatsberichte der Koniglichen Preussische Akademie der Wissenschaften zu Berlin. 1861: 222-240-275-315. gs

Iaccarino, S. (1985). Mediterranean Miocene and Pliocene planktic foraminifea. In, Bolli, H. M., Saunders, J. B. & Perch-Nielsen, K. (eds) Plankton Stratigraphy. Cambrige University Press, Cambrige 283-314. gs

Jenkins, D. G. (1967). Planktonic foraminiferal zones and new taxa from the lower Miocene to the Pleistocene of New Zealand. New Zealand Journal of Geology and Geophysics. 10(4): 1064-1078. gs

Kennett, J. P. & Srinivasan, M. S. (1980). Surface ultrastructural variation in Neogloboquadrina pachyderma (Ehrenberg): phenotypic variation and phylogeny in the Late Cenozoic. In, Sliter, W. V. (ed.) Studies in Marine Micropaleontology: A Memorial Volume to Orville L. Bandy. Cushman Foundation for Foraminiferal Research, Special Publication . 19(19): 134-162. gs O

Kennett, J. P. & Srinivasan, M. S. (1983). Neogene Planktonic Foraminifera. Hutchinson Ross Publishing Co., Stroudsburg, Pennsylvania. 1-265. gs

Kennett, J. P. (1968). Latitudinal variation in Globigerina pachyderma (Ehrenberg) in surface sediments of the southwest Pacific Ocean. Micropaleontology. 14(3): 305-318. gs

Lam, A. & Leckie, R. M. (2020a). Late Neogene and Quaternary diversity and taxonomy of subtropical to temperate planktic foraminifera across the Kuroshio Current Extension, northwest Pacific Ocean. Micropaleontology. 66(3): 177-268. gs

Norris, R. D. (1998). Planktonic foraminifer biostratigraphy: Eastern Equatorial Atlantic. Proceedings of the Ocean Drilling Program, Scientific Results. 159: 445-479. gs O

Siccha, M. & Kucera, M. (2017). ForCenS, a curated database of planktonic foraminifera census counts in marine surface sediment samples. Scientific Data. 4(1): 1-12. gs

Srinivasan, M. S. & Kennett, J. P. (1976). Evolution and phenotypic variation in the Late Cenozoic Neogloboquadrina dutertrei plexus. In, Takayanagi, Y. & Saito, T. (eds) Progress in Micropaleontology. American Museum of Natural History Micropaleontology Press, New York 329-355. gs

Vergnaud-Grazzini, C. (1976). Non-equilibrium isotopic compositions of shells of planktonic foraminifera in the Mediterranean Sea. Palaeogeography Palaeoclimatology Palaeoecology. 20: 263-276. gs


logo

Neogloboquadrina pachyderma compiled by the pforams@mikrotax project team viewed: 15-9-2024

Taxon Search:
Advanced Search

Short stable page link: https://mikrotax.org/pforams/index.php?id=104179 Go to Archive.is to create a permanent copy of this page - citation notes



Add Comment

* Required information
Captcha Image
Powered by Commentics

Comments

No comments yet. Be the first!