pforams@mikrotax - Catapsydrax dissimilis pforams@mikrotax - Catapsydrax dissimilis

Catapsydrax dissimilis


Classification: pf_cenozoic -> Globigerinidae -> Catapsydrax -> Catapsydrax dissimilis
Sister taxa: C. indianus, C. dissimilis, C. globiformis, C. africanus, C. howei, C. unicavus, C. sp.

Taxonomy

Citation: Catapsydrax dissimilis (Cushman & Bermudez 1937)
taxonomic rank: Species
Basionym: Globigerina dissimilis
Synonyms:
Taxonomic discussion:

Whether Cushman and Bermúdez’s (1937) holotype of dissimilis, which is described as from the “Eocene of Cuba”, does in fact have two infralaminal apertures is debatable, even after additional SEM imaging, because adhering material clogs the umbilical region (Pl. 4.1, Figs. 1-3). Our new SEM images of the paratype of dissimilis, from the same locality as the holotype, however, clearly show two infralaminal apertures (Pl. 4.1, Figs. 4-5), thus we can give the holotype the benefit of the doubt and consider the second opening to be concealed, as is consistent with the traditional understanding of this species.

As described by Blow (1979), many authors’ concept of dissimilis is based on Oligocene specimens that are closer to Blow and Banner’s (1962) subspecies Globigerinita dissimilis ciperoensis (Pl. 4.1, Figs. 6-8) (compact, flattened bulla) from the lower Oligocene of Trinidad, than to the Eocene holotype of C. dissimilis (Pl. 4.1, Figs. 1-3). Both holotypes exhibit a bulla and two infralaminal apertures but the bulla and test are generally more inflated in C. dissimilis sensu stricto. Because the concept of C. dissimilis is well entrenched we take a conservative approach and regard dissimilis ciperoensis as a junior synonym of the former (see also discussion in Pearson and Wade, 2009). Morphological evolution of Catapsydrax through the late Oligocene involved expansion of the bulla across the ventral surface and an increase in the number of infralaminal openings (up to 4) on a simple (non-lobed) bulla. Under our taxonomy Catapsydrax dissimilis is expanded to include these morphologies (Plate 4.1, Fig. 11).

Globigerinita riveroae Bermúdez (1961) is tentatively placed as a junior synonym of C. dissimilis (Plate. 4.1, Fig. 14), although it is possible that this species is closer to Subbotina corpulenta, owing to the large size and globular form.[Coxall & Spezzaferri 2018]

Catalog entries: Globigerina dissimilis, Globigerina simulans

Type images:

Distinguishing features:
Parent taxon (Catapsydrax): Like Globorotaloides but more compact, radially compressed, with appressed inflated chambers in the final whorl, and always with bulla
This taxon: Like C. unicavus but with 2-4 infralaminal openings around the bulla (vs. 1 in C. unicavus)

NB These concise distinguishing features statements are used in the tables of daughter-taxa to act as quick summaries of the differences between e.g. species of one genus.
They are being edited as the site is developed and comments on them are especially welcome.

Description


Morphology:
Test moderately large, compact, low-moderate trochospiral of 2½-3 whorls, involute, lobate with 4 chambers in the final whorl, enlarging slowly. Later chambers are inflated, subglobular but slightly appressed and embracing. The early ontogenetic whorl, comprising 4½-5 chambers, is flattened or raised slightly above the adult whorl as seen in spiral view. Sutures are straight and depressed on the umbilical side and moderately depressed and slightly curved on spiral side. The primary aperture is a low umbilical arch covered by a single slightly inflated or flattened bulla less coarsely cancellate than the rest of test, with 2 or more (up to 4) rimmed infralaminal openings. [Coxall & Spezzaferri 2018]

Wall type:
Coarsely cancellate, sacculifer-type, probably spinose; in adult stage wall becomes thickened. [Coxall & Spezzaferri 2018]

Size:
Maximum diameter of holotype ~0.5 mm, thickness ~0.3 mm. [Coxall & Spezzaferri 2018]

Character matrix
test outline:Lobatechamber arrangement:Trochospiraledge view:Inequally biconvexaperture:Umbilical
sp chamber shape:Globularcoiling axis:Lowperiphery:N/Aaperture border:Bulla
umb chbr shape:Globularumbilicus:Narrowperiph margin shape:Moderately roundedaccessory apertures:Infralaminal
spiral sutures:Moderately depressedumb depth:Deepwall texture:Cancellateshell porosity:Finely Perforate: 1-2.5µm
umbilical or test sutures:Moderately depressedfinal-whorl chambers:4-4 N.B. These characters are used for advanced search. N/A - not applicable

Biogeography and Palaeobiology


Geographic distribution

Global, low to high latitudes, including New Zealand, the subantarctic and high North Atlantic Ocean (Berggren, 1972; Huber, 1991; Galeotti and others, 2002). It is more common in upwelling regions (Spezzaferri, 1995). [Coxall & Spezzaferri 2018]

Isotope paleobiology
Catapsydrax dissimilis, like other species of Catapsydrax, registers among the most positive δ18O values within an assemblage, and lowest δ13C indicating it was a sub-thermocline calcifier and among the deepest dwelling of the Oligocene planktonic foraminifera (Poore and Matthews, 1984; van Eijden and Ganssen, 1995; Wade and others, 2007; Pearson and Wade, 2009; Spezzaferri and Pearson, 2009; Moore and others, 2014). [Coxall & Spezzaferri 2018]

Phylogenetic relations
Catapsydrax dissimilis evolved from C. unicavus in the upper middle Eocene Zone E13 (Blow and Banner, 1962). Blow (1979) suggested that the ancestor was Globigerinita simulans (Bermúdez) but the specimens he ascribed to that species are here included in the synonymy of unicavus (see below). [Coxall & Spezzaferri 2018]

Most likely ancestor: Catapsydrax unicavus - at confidence level 4 (out of 5). Data source: Olsson et al. 2006 f5.1.
Likely descendants: Catapsydrax indianus; plot with descendants

Biostratigraphic distribution

Geological Range:
Notes: According to Blow and Banner (1962:106-107) “Globigerinita dissimilis dissimilis ranges from at least the upper part of the Truncorotaloides rohri Zone, Navet Formation, middle Eocene, to the top of the Globigerinita stainforthi Zone (Aquitanian) in southern Trinidad. In Tanganyika [=Tanzania] it is known to occur also from the upper part of the Truncorotaloides rohri Zone, ranging up into the Aquitanian”. The oldest specimen figured by Blow and Banner (1962) is from the “Globigerapsis semi-involuta Zone” (=E14/E15 of Wade and others, 2011). In summary, C. dissimilis extends from the upper middle Eocene (Zone E13) (Blow and Banner, 1962) to the lower Miocene Zone bearing the taxon’s name, i.e. Zone M3, the Globigerinatella sp./Catapsydrax dissimilis Concurrent range Zone (Bolli, 1957; Spezzaferri, 1994; Wade and others, 2011), where it has been found to occur commonly (Bolli, 1957; Berggren and others, 1995). The highest occurrence of Catapsydrax dissimilis remains a marker in standard biostratigraphic zonal schemes (Bolli, 1957; Kennett and Srinivasan, 1983; Bolli and Saunders, 1985; Berggren and others, 1995; Wade and others, 2011) and is calibrated to 17.62 Ma on the time scale of Cande and Kent (1995) (Wade and others, 2011). [Coxall & Spezzaferri 2018]
Last occurrence (top): at top of M3 zone (100% up, 17.5Ma, in Burdigalian stage). Data source: Wade et al. 2011; Coxall & Spezzaferri 2018
First occurrence (base): within E13 zone (37.99-39.97Ma, base in Bartonian stage). Data source: Coxall & Spezzaferri 2018

Plot of occurrence data:

Primary source for this page: Coxall & Spezzaferri 2018 - Olig Atlas chap.4 p.83; Olsson et al. 2006 - Eocene Atlas, chap. 5, p. 71

References:

Berggren, W. A. (1972). Cenozoic biostratigraphy and paleobiogeography of the North Atlantic. Initial Reports of the Deep Sea Drilling Project. 12: 965-1001. gs

Berggren, W. A., Kent, D. V., Swisher, I. , C. C. & Aubry, M. -P. (1995b). A revised Cenozoic geochronology and chronostratigraphy. In, Berggren, W. A., Kent, D. V., Aubry, M. -P. & Hardenbol, J. (eds) Geochronology, Time Scales and Global Stratigraphic Correlations. SEPM (Society for Sedimentary Geology) Special Publication No. 54, 129-212. gs

Bermudez, P. J. (1937b). Nuevas especies de Foraminiferos del Eoceno de Cuba. Memorias de la Sociedad Cubana de Historia Natural “Felipe Poey”. 11: 137-150. gs

Bermudez, P. J. (1961). Contribucion al estudio de las Globigerinidea de la region Caribe-Antillana (Paleoceno-Reciente). Editorial Sucre, Caracas. (3): 1119-1393. gs

Blaicher, J. (1970). "Globigeryny" podmenilitowych margli globigeryn owych. Biuletyn Panstwowego Instytutu Geologicznego. 221(5): 137-204. gs

Blow, W. H. & Banner, F. T. (1962). The mid-Tertiary (Upper Eocene to Aquitanian) Globigerinaceae. In, Eames, F. E., Banner, F. T., Blow, W. H. & Clarke, W. J. (eds) Fundamentals of mid-Tertiary Stratigraphical Correlation. Cambridge University Press, Cambridge 61-151. gs

Blow, W. H. (1979). The Cainozoic Globigerinida: A study of the morphology, taxonomy, evolutionary relationships and stratigraphical distribution of some Globigerinida (mainly Globigerinacea). E. J. Brill, Leiden. 2: 1-1413. gs

Bolli, H. M. & Saunders, J. B. (1985). Oligocene to Holocene low latitude planktic foraminifera. In, Bolli, H. M., Saunders, J. B. & Perch-Neilsen, K. (eds) Plankton Stratigraphy. Cambridge University Press, Cambridge, UK 155-262. gs

Bolli, H. M. (1957b). Planktonic foraminifera from the Oligocene-Miocene Cipero and Lengua formations of Trinidad, B.W.I. In, Loeblich, A. R. , Jr., Tappan, H., Beckmann, J. P., Bolli, H. M., Montanaro Gallitelli & E. Troelsen, J. C. (eds) Studies in Foraminifera. U.S. National Museum Bulletin . 215: 97-123. gs

Brönnimann, P. & Resig, J. (1971). A Neogene globigerinacean biochronologic time-scale of the southwestern Pacific. Initial Reports of the Deep Sea Drilling Project. 7(2): 1235-1469. gs O

Cande, S. C. & Kent, D. V. (1995). Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research. 100: 6093-6095. gs

Coxall, H. K. & Spezzaferri, S. (2018). Taxonomy, biostratigraphy, and phylogeny of Oligocene Catapsydrax, Globorotaloides, and Protentelloides. In, Wade, B. S., Olsson, R. K., Pearson, P. N., Huber, B. T. & Berggren, W. A. (eds) Atlas of Oligocene Planktonic Foraminifera. Cushman Foundation for Foraminiferal Research, Special Publication . 46(Chap 4): 79-124. gs

Cushman, J. A. & Bermudez, P. J. (1937). Further new species of foraminifera from the Eocene of Cuba. Contributions from the Cushman Laboratory for Foraminiferal Research. 13(1): 1-29. gs

Fleisher, R. L. (1974a). Cenozoic planktonic foraminifera and biostratigraphy, Arabian Sea, Deep Sea Drilling Project, Leg 23A. Initial Reports of the Deep Sea Drilling Project. 23: 1001-1072. gs O

Galeotti, S., Coccione, R. & Gersonde, R. (2002). Middle Eocene – early Pliocene subantarctic planktic foraminiferal biostratigraphy of Site 1090, Agulhas Ridge. Marine Micropaleontology. 45: 357-581. gs

Huber, B. T. (1991c). Paleogene and Early Neogene Planktonic Foraminifer Biostratigraphy of Sites 738 and 744, Kerguelen Plateau (Southern Indian Ocean). Proceedings of the Ocean Drilling Program, Scientific Results. 119: 427-449. gs

Jenkins, D. G. & Orr, W. N. (1972). Planktonic foraminiferal biostratigraphy of the east equatorial Pacific--DSDP Leg 9. Initial Reports of the Deep Sea Drilling Project. 9: 1059-1193. gs O

Jenkins, D. G. (1960). Planktonic foraminifera from the Lakes Entrance oil shaft, Victoria, Australia. Micropaleontology. 6: 345-371. gs

Kennett, J. P. & Srinivasan, M. S. (1983). Neogene Planktonic Foraminifera. Hutchinson Ross Publishing Co., Stroudsburg, Pennsylvania. 1-265. gs

Krasheninnikov, V. A. & Pflaumann, U. (1977). Zonal stratigraphy and planktonic foraminifers of Paleogene deposits of the Atlantic Ocean to the west of Africa (Deep Sea Drilling Project, Leg 41). Initial Reports of the Deep Sea Drilling Project. 41: 581-612. gs

Leckie, R. M., Farnham, C. & Schmidt, M. G. (1993). Oligocene planktonic foraminifer biostratigraphy of Hole 803D (Ontong Java Plateau) and Hole 628A (Little Bahama Bank), and comparison with the southern high latitudes. Proceedings of the Ocean Drilling Program, Scientific Results. 130: 113-136. gs

Loeblich, A. R. & Tappan, H. (1957b). Planktonic foraminifera of Paleocene and early Eocene Age from the Gulf and Atlantic coastal plains. In, Loeblich, A. R. , Jr., Tappan, H., Beckmann, J. P., Bolli, H. M., Montanaro Gallitelli, E. & Troelsen, J. C. (eds) Studies in Foraminifera. U.S. National Museum Bulletin . 215: 173-198. gs

Moore, T. C. et al. (2014). Equatorial Pacific Productivity Changes near the Eocene-Oligocene Boundary. Paleoceanography. 29: 825-844. gs

Norris, R. D. (1998). Planktonic foraminifer biostratigraphy: Eastern Equatorial Atlantic. Proceedings of the Ocean Drilling Program, Scientific Results. 159: 445-479. gs O

Olsson, R. K., Pearson, P. N. & Huber, B. T. (2006c). Taxonomy, biostratigraphy, and phylogeny of Eocene Catapsydrax, Globorotaloides, Guembelitrioides, Paragloborotalia, Parasubbotina, and Pseudoglobigerinella n. gen. In, Pearson, P. N., Olsson, R. K., Hemleben, C., Huber, B. T. & Berggren, W. A. (eds) Atlas of Eocene Planktonic Foraminifera. Cushman Foundation for Foraminiferal Research, Special Publication . 41(Chap 5): 67-110. gs O

Pearson, P. N. & Wade, B. S. (2009). Taxonomy and stable isotope paleoecology of well-preserved planktonic foraminifera from the uppermost Oligocene of Trinidad. Journal of Foraminiferal Research. 39: 191-217. gs

Poore, R. Z. & Matthews, R. K. (1984). Oxygen isotope ranking of late Eocene and Oligocene planktonic foraminifers: implications for Oligocene sea-surface temperatures and global ice-volume. Marine Micropaleontology. 9: 111-134. gs

Postuma, J. A. (1971). Manual of planktonic foraminifera. Elsevier for Shell Group, The Hague. 1-406. gs

Quilty, P. G. (1976). Planktonic foraminifera DSDP Leg 34, Nazca Plate. Initial Reports of the Deep Sea Drilling Project. 34: 629-703. gs O

Raju, D. S. N. (1971). Upper Eocene to Early Miocene planktonic foraminifera from the subsurface sediments in Cauvery Basin, India. Jahrbuch der Geologischen Bundesanstalt, Sonderband. 17: 7-68. gs

Spezzaferri, S. & Pearson, P. N. (2009). Distribution and ecology of Catapsydrax indianus, a new planktonic foraminifer index species for the Late Oligocene–Early Miocene. Journal of Foraminiferal Research. 39(2): 112-119. gs

Spezzaferri, S. & Premoli Silva, I. (1991). Oligocene planktonic foraminiferal biostratigraphy and paleoclimatic interpretation from Hole 538A, DSDP Leg 77, Gulf of Mexico. Palaeogeography Palaeoclimatology Palaeoecology. 83: 217-263. gs

Spezzaferri, S. (1994). Planktonic foraminiferal biostratigraphy and taxonomy of the Oligocene and lower Miocene in the oceanic record. An overview. Palaeontographia Italica. 81: 1-187. gs

Spezzaferri, S. (1995). Planktonic foraminiferal paleoclimatic implications across the Oligocene-Miocene transition in the oceanic record (Atlantic, Indian, and South Pacific). Palaeogeography Palaeoclimatology Palaeoecology. 114: 43-74. gs

van Eijden, A. J. M. & Ganssen, G. M. (1995). An Oligocene multi-species foraminiferal oxygen and carbon isotope record from ODP Hole 758A (Indian Ocean): paleoceanographic and paleo-ecologic implications. Marine Micropaleontology. 25: 47-65. gs

Wade, B. S., Berggren, W. A. & Olsson, R. K. (2007). The biostratigraphy and paleobiology of Oligocene planktonic foraminifera from the Equatorial Pacific Ocean (ODP Site 1218). Marine Micropaleontology. 62: 167-179. gs

Wade, B. S., Pearson, P. N., Berggren, W. A. & Pälike, H. (2011). Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth-Science Reviews. 104: 111-142. gs


logo

Catapsydrax dissimilis compiled by the pforams@mikrotax project team viewed: 16-10-2024

Taxon Search:
Advanced Search

Short stable page link: https://mikrotax.org/pforams/index.php?id=100048 Go to Archive.is to create a permanent copy of this page - citation notes