Bolli and Saunders (1985) originally proposed the use of size as the principle criterion to distinguish nana and opima with specimens nana. Spezzaferri (1994) rejected this size criterion because of the possible implication that nana was the juvenile and opima the adult of the same species. However, large-sized, 4-5 chambered Paragloborotalia have a short, distinct range in the mid- to early late Oligocene, while the smaller nana s.s. has a much longer range. In a quantitative study of Paragloborotalia size changes in the equatorial Pacific, Wade and others (2007, 2016) concluded that Bolli’s size criteria for distinguishing the opima-nana plexus are robust. They documented a sharp decline in the sizes of 4 and 5 chambered Paragloborotalia within Chron C9n marking the highest occurrence of P. opima and the O5/O6 zonal boundary. We continue to favor the use of size as a primary criterion to distinguish P. nana from P. opima because the smaller nana co-occurs with its larger descendant opima in the mid Oligocene, but then continues to range beyond the highest occurrence of opima into the early Miocene (e.g., Leckie and others, 1993; Morgans and others, 2002; Wade and others, 2007, 2016). [Leckie et al. 2018]
[Leckie et al. 2018]
Catalog entries: Globorotalia opima nana
Type images:Distinguishing features:
Parent taxon (Paragloborotalia): Very low trochospiral test with low-arched umbilical-extraumbilical aperture with a thick lip; 4-5 chambers in the ultimate whorl, and a coarsely cancellate, sacculifer-type wall.
This taxon: Test small, compact, quadrangular, usually 4 chambers in the final whorl. Umbilicus very narrow, sutures radial. Aperture with prominent lip, which often obscures the primary aperture.
Morphology:
Wall type:
Size:
Character matrix
test outline: | Quadrate | chamber arrangement: | Trochospiral | edge view: | Equally biconvex | aperture: | Umbilical-extraumbilical |
sp chamber shape: | Globular | coiling axis: | Low | periphery: | N/A | aperture border: | Thick lip |
umb chbr shape: | Globular | umbilicus: | Narrow | periph margin shape: | Broadly rounded | accessory apertures: | None |
spiral sutures: | Weakly depressed | umb depth: | Shallow | wall texture: | Cancellate | shell porosity: | Macroperforate: >2.5µm |
umbilical or test sutures: | Moderately depressed | final-whorl chambers: | 4-4.5 | N.B. These characters are used for advanced search. N/A - not applicable |
Geographic distribution
Isotope paleobiology
Phylogenetic relations
Most likely ancestor: Paragloborotalia griffinoides - at confidence level 4 (out of 5). Data source: Olsson et al 2006 f5.1.
Likely descendants: Paragloborotalia birnageae; Paragloborotalia continuosa; Paragloborotalia opima; Paragloborotalia pseudocontinuosa; Paragloborotalia pseudokugleri; Paragloborotalia siakensis;
plot with descendants
Geological Range:
Notes: Zone E13 to Zone M2. According to Blow (1979) and Toumarkine and Luterbacher (1985), P. nana first appeared in upper Eocene Zone E13. Forms transitional with its proposed ancestor, P. griffinoides, have been reported as low as Zone E7 in Tanzania (Olsson and others, 2006). Paragloborotalia nana persisted into the lower Miocene Zone N4 (Kennett and Srinivasan, 1983). Jenkins (1978) reports a last occurrence of P. nana in the lower Miocene G. woodi Zone in the southeast Atlantic Ocean (DSDP Site 362). A number of oceanic sites show highest occurrences within the early Miocene (Chaisson and Leckie, 1993; Pearson and Chaisson, 1997; Spezzaferri, 1998). [Leckie et al. 2018]
Last occurrence (top): within M2 zone (19.30-21.12Ma, top in Burdigalian stage). Data source: Leckie et al. 2018
First occurrence (base): within E13 zone (37.99-39.97Ma, base in Bartonian stage). Data source: Leckie et al. 2018 (but with possible early forms down to E7)
Plot of occurrence data:
Primary source for this page: Leckie et al. 2018 - Olig Atlas chap.5 p.149; Olsson et al. 2006 - Eocene Atlas, chap. 5, p. 95
Berggren, W. A. & Amdurer, A. (1973). Late Paleogene (Oligocene) and Neogene planktonic foraminiferal biostratigraphy of the Atlantic Ocean (Lat. 30N to Lat. 30S). Rivista Italiana di Paleontologia e Stratigrafia. 79: 337-392. gs Blow, W. H. (1959). Age, correlation, and biostratigraphy of the upper Tocuyo (San Lorenzo) and Pozon Formations, eastern Falcon, Venezuela. Bulletins of American Paleontology. 39(178): 67-251. gs Blow, W. H. (1969). Late middle Eocene to Recent planktonic foraminiferal biostratigraphy. In, Bronnimann, P. & Renz, H. H. (eds) Proceedings of the First International Conference on Planktonic Microfossils, Geneva, 1967. E J Brill, Leiden 380-381. gs Blow, W. H. (1979). The Cainozoic Globigerinida: A study of the morphology, taxonomy, evolutionary relationships and stratigraphical distribution of some Globigerinida (mainly Globigerinacea). E. J. Brill, Leiden. 2: 1-1413. gs Boersma, A. & Shackleton, N. J. (1978). Oxygen and carbon isotope record through the Oligocene, Site 366 (equatorial Atlantic). Initial Reports of the Deep Sea Drilling Project. 41: 957-962. gs Bolli, H. M. & Saunders, J. B. (1982a). Globorotalia mayeri and its relationship to Globorotalia siakensis and Globorotalia continuosa,. Journal of Foraminiferal Research. 12(1): 39-50. gs Bolli, H. M. & Saunders, J. B. (1985). Oligocene to Holocene low latitude planktic foraminifera. In, Bolli, H. M., Saunders, J. B. & Perch-Neilsen, K. (eds) Plankton Stratigraphy. Cambridge University Press, Cambridge, UK 155-262. gs Bolli, H. M. (1957b). Planktonic foraminifera from the Oligocene-Miocene Cipero and Lengua formations of Trinidad, B.W.I. In, Loeblich, A. R. , Jr., Tappan, H., Beckmann, J. P., Bolli, H. M., Montanaro Gallitelli & E. Troelsen, J. C. (eds) Studies in Foraminifera. U.S. National Museum Bulletin . 215: 97-123. gs Chaisson, W. P. & Leckie, R. M. (1993). High-resolution Neogene planktonic foraminifer biostratigraphy of Site 806, Ontong Java Plateau (Western Equatorial Pacific). Proceedings of the Ocean Drilling Program, Scientific Results. 130: 137-178. gs Chaproniere, G. C. H. (1981). Late Oligocene to Early Miocene planktic Foraminiferida from Ashmore Reef no. 1 well, northwest Australia. Alcheringa. 5: 103-131. gs Cifelli, R. (1982). Early Occurrences and some Phylogenetic Implications of Spiny, Honeycomb Textured Planktonic Foraminifera. Journal of Foraminiferal Research. 12(2): 105-115. gs Douglas, R. G. & Savin, S. M. (1978). Oxygen isotopic evidence for the depth stratification of Tertiary and Cretaceous foraminifera. Palaeogeography Palaeoclimatology Palaeoecology. 3: 175-196. gs Fleisher, R. L. (1974a). Cenozoic planktonic foraminifera and biostratigraphy, Arabian Sea, Deep Sea Drilling Project, Leg 23A. Initial Reports of the Deep Sea Drilling Project. 23: 1001-1072. gs O Huber, B. T. (1991c). Paleogene and Early Neogene Planktonic Foraminifer Biostratigraphy of Sites 738 and 744, Kerguelen Plateau (Southern Indian Ocean). Proceedings of the Ocean Drilling Program, Scientific Results. 119: 427-449. gs Jenkins, D. G. (1971). New Zealand Cenozoic Planktonic Foraminifera. New Zealand Geological Survey, Paleontological Bulletin. 42: 1-278. gs Jenkins, D. G. (1978). Guembelitria samwelli Jenkins, a new species from the Oligocene of the Southern Hemishere. Journal of Foraminiferal Research. 8(2): 132-137. gs Kennett, J. P. & Srinivasan, M. S. (1983). Neogene Planktonic Foraminifera. Hutchinson Ross Publishing Co., Stroudsburg, Pennsylvania. 1-265. gs Krasheninnikov, V. A. & Pflaumann, U. (1977). Zonal stratigraphy and planktonic foraminifers of Paleogene deposits of the Atlantic Ocean to the west of Africa (Deep Sea Drilling Project, Leg 41). Initial Reports of the Deep Sea Drilling Project. 41: 581-612. gs Krasheninnikov, V. A. & Pflaumann, U. (1978). Cretaceous agglutinated foraminifera of the Atlantic Ocean off west Africa (Leg 41, Deep Sea Drilling Project). Initial Reports of the Deep Sea Drilling Project. 41: 565-580. gs Leckie, R. M., Farnham, C. & Schmidt, M. G. (1993). Oligocene planktonic foraminifer biostratigraphy of Hole 803D (Ontong Java Plateau) and Hole 628A (Little Bahama Bank), and comparison with the southern high latitudes. Proceedings of the Ocean Drilling Program, Scientific Results. 130: 113-136. gs Leckie, R. M. et al. (2018). Taxonomy, biostratigraphy, and phylogeny of Oligocene and Lower Miocene Paragloborotalia and Parasubbotina. In, Wade, B. S., Olsson, R. K., Pearson, P. N., Huber, B. T. & Berggren, W. A. (eds) Atlas of Oligocene Planktonic Foraminifera. Cushman Foundation for Foraminiferal Research, Special Publication . 46(Chap 5): 125-178. gs Li, Q., Jian, Z. & Su, X. (2005). Late Oligocene rapid transformations in the South China Sea. Marine Micropaleontology. 54: 5-25. gs Matsui, H. et al. (2016). Changes in the depth habitat of the Oligocene planktic foraminifera (Dentoglobigerina venezuelana) induced by thermocline deepening in the eastern equatorial Pacific. Paleoceanography. 31: 715-731. gs Morgans, H. E. G. et al. (2002). Integrated stratigraphy of the lower Altonian (early Miocene) sequence at Tangakaka Stream, East Cape, New Zealand. New Zealand Journal of Geology and Geophysics. 45: 145-173. gs Olsson, R. K., Hemleben, C., Huber, B. T. & Berggren, W. A. (2006a). Taxonomy, biostratigraphy, and phylogeny of Eocene Globigerina, Globoturborotalita, Subbotina, and Turborotalita. In, Pearson, P. N., Olsson, R. K., Hemleben, C., Huber, B. T. & Berggren, W. A. (eds) Atlas of Eocene Planktonic Foraminifera. Cushman Foundation for Foraminiferal Research, Special Publication . 41(Chap 6): 111-168. gs O Olsson, R. K., Pearson, P. N. & Huber, B. T. (2006c). Taxonomy, biostratigraphy, and phylogeny of Eocene Catapsydrax, Globorotaloides, Guembelitrioides, Paragloborotalia, Parasubbotina, and Pseudoglobigerinella n. gen. In, Pearson, P. N., Olsson, R. K., Hemleben, C., Huber, B. T. & Berggren, W. A. (eds) Atlas of Eocene Planktonic Foraminifera. Cushman Foundation for Foraminiferal Research, Special Publication . 41(Chap 5): 67-110. gs O Pearson, P. N. & Chaisson, W. P. (1997). Late Paleocene to middle Miocene planktonic foraminifer biostratigraphy, Ceara Rise. Proceedings of the Ocean Drilling Program, Scientific Results. 154: 33-68. gs Pearson, P. N. & Wade, B. S. (2009). Taxonomy and stable isotope paleoecology of well-preserved planktonic foraminifera from the uppermost Oligocene of Trinidad. Journal of Foraminiferal Research. 39: 191-217. gs Pearson, P. N. (1995). Planktonic foraminifer biostratigraphy and the development of pelagic caps on guyots in the Marshall Islands group. Proceedings of the Ocean Drilling Program, Scientific Results. 144: 21-59. gs Pearson, P. N. et al. (2004). Paleogene and Cretaceous sediment cores from the Kilwa and Lindi areas of coastal Tanzania: Tanzania Drilling Project Sites 1–5. Journal of African Earth Sciences. 39: 25-62. gs Poag, C. W. & Commeau, J. A. (1995). Paleocene to middle Miocene planktic foraminifera of the southwestern Salisbury Embayment, Virginia and Maryland: Biostratigraphy, allostratigraphy, and sequence stratigraphy. Journal of Foraminiferal Research. 25: 134-155. gs Poore, R. Z. & Matthews, R. K. (1984). Oxygen isotope ranking of late Eocene and Oligocene planktonic foraminifers: implications for Oligocene sea-surface temperatures and global ice-volume. Marine Micropaleontology. 9: 111-134. gs Postuma, J. A. (1971). Manual of planktonic foraminifera. Elsevier for Shell Group, The Hague. 1-406. gs Quilty, P. G. (1976). Planktonic foraminifera DSDP Leg 34, Nazca Plate. Initial Reports of the Deep Sea Drilling Project. 34: 629-703. gs O Raju, D. S. N. (1971). Upper Eocene to Early Miocene planktonic foraminifera from the subsurface sediments in Cauvery Basin, India. Jahrbuch der Geologischen Bundesanstalt, Sonderband. 17: 7-68. gs Rincón, D. et al. (2007). Eocene–Pliocene planktonic foraminifera biostratigraphy from the continental margin of the southwest Caribbean. Stratigraphy. 4: 261-311. gs Spezzaferri, S. & Premoli Silva, I. (1991). Oligocene planktonic foraminiferal biostratigraphy and paleoclimatic interpretation from Hole 538A, DSDP Leg 77, Gulf of Mexico. Palaeogeography Palaeoclimatology Palaeoecology. 83: 217-263. gs Spezzaferri, S. (1994). Planktonic foraminiferal biostratigraphy and taxonomy of the Oligocene and lower Miocene in the oceanic record. An overview. Palaeontographia Italica. 81: 1-187. gs Spezzaferri, S. (1998). Planktonic foraminiferal biostratigraphy and paleoenvironmental implications of Leg 152 sites (East Greenland Margin). Proceedings of the Ocean Drilling Program, Scientific Results. 152: 161-190. gs Stainforth, R. M. & Lamb, J. L. (1981). An evaluation of planktonic foraminiferal zonation of the Oligocene. University of Kansas Paleontological Contributions, Papers. 104: 1-34. gs Stainforth, R. M., Lamb, J. L., Luterbacher, H., Beard, J. H. & Jeffords, R. M. (1975). Cenozoic planktonic foraminiferal zonation and characteristics of index forms. University of Kansas Paleontological Contributions, Articles. 62: 1-425. gs O Toumarkine, M. (1978). Planktonic foraminiferal biostratigraphy of the Paleogene of Sites 360 to 364 and the Neogene of Sites 362A, 363 and 364 Leg 40,. Initial Reports of the Deep Sea Drilling Project. 40: 679-721. gs Wade, B. S., Berggren, W. A. & Olsson, R. K. (2007). The biostratigraphy and paleobiology of Oligocene planktonic foraminifera from the Equatorial Pacific Ocean (ODP Site 1218). Marine Micropaleontology. 62: 167-179. gs Wade, B. S., Poole, C. R. & Boyd, J. (2016). Giantism in Oligocene planktonic foraminifera Paragloborotalia opima: Morphometric constraints from the equatorial Pacific Ocean. Newsletters on Stratigraphy. 49: 421-444. gsReferences:
![]() |
Paragloborotalia nana compiled by the pforams@mikrotax project team viewed: 11-2-2025
Short stable page link: https://mikrotax.org/dinotax/index.php?id=100223 Go to Archive.is to create a permanent copy of this page - citation notes |