pforams@mikrotax - Globigerina bulloides pforams@mikrotax - Globigerina bulloides

Globigerina bulloides

Classification: pf_cenozoic -> Globigerinidae -> Globigerina -> Globigerina bulloides
Sister taxa: G. bulloides, G. falconensis, G. umbilicata ⟩⟨ G. archaeobulloides, G. officinalis, G. sp.


Citation: Globigerina bulloides d’Orbigny, 1826
taxonomic rank: species
Basionym: Globigerina bulloides d’Orbigny, 1826

"The test of Gg. (Gg.) bulloides shows considerable variation in the number and shape of chambers in the final whorl and size of the aperture. This has resulted in the erection of a number of species, ...They are all regarded here as phenotypic variants of Gg. (Gg.) bulloides." [Kennett & Srinivasan 1983]

  • Globigerina quadrilatera Galloway & Wissler 1927 - form with unusually small final chamber  [according to Kennett & Srinivasan 1983, Brummer & Kucera 2022]
  • Globigerina bermudezi Seiglie, 1963 - form with aberrant last chamber [according to Kennett & Srinivasan 1983, Brummer & Kucera 2022]
  • Globigerina megastoma cariacoensis Rögl and Bolli, 1973 = Globigerina cariacoensis - higher trochospiral form [according to Kennett & Srinivasan 1983, Brummer & Kucera 2022]
Globigerina riveroae Bolli and Bermudez, 1965 was also included in this list however, new SEM images of the holotype  indicate it has a cancellate wall, and therefore this form has been moved out of synonymy of G. bulloides [Bridget Wade, November 2017].

Globigerina foliata Bolli 1957, was not discussed by Kennett & Srinivasan 1983. Lam & Leckie (2020) use it and state "We differentiate Globigerina foliata from G. bulloides by having a smaller, much lower arched aperture that is interiomarginal with a low and indistinct lip or rim." They give it a range of Serravalian to Recent.
Taxonomic discussion:

Globigerina bulloides was described from Recent deposits, near Rimini, Adriatic Sea, Italy (d’Orbigny, 1826) and is a common species in the Neogene. A holotype was never selected. Banner and Blow (1960) designated a lectotype (Banner and Blow, 1960; pl. l, figs. l, 4; illustration reproduced here on Pl. 6.2, Figs. 1-3) from a set of syntypes that were “theoretically”…“included by d’Orbigny in his concept of the species at the time of the first publication”. The syntype suite contained diverse morphologies and selection was aided by reference to two plaster models of bulloides made by d’Orbigny, which constrained d’Orbigny’s core concept. Kennett and Srinivasan (1983) derived G. bulloides from G. praebulloides Blow in the upper part of the lower Miocene. SEM images of the holotype of G. praebulloides (Pl. 6.8, Figs. 4-6) and Globigerinella obesa (Bolli) indicate that G. praebulloides is a junior synonym of G. obesa, which is unclear from Blow’s holotype drawing of G. praebulloides. Globigerinella obesa has a bulloides-type wall texture but it differs from G. bulloides in that the pore concentration is lower (~60 pores/50 mm2 test surface area), the pore diameter is larger (~1.5-2 mm) and the trochospire is lower. It is similar to Globigerinella praesiphonifera in wall structure. These species appear to be a separate phylogenetic lineage from that of G. bulloides. The wall texture characteristic of G. bulloides first appears in Zone O1 in the new species G. archaeobulloides.

[Spezzaferri et al. 2018]

Catalog entries: Globigerina bulloides, Globigerina quadrilatera, Globigerina bermudezi, Globigerina megastoma cariacoensis, Globigerina foliata, Globigerina diplostoma

Type images:

Distinguishing features:
Parent taxon (Globigerina): Low trochospirally enrolled, globose test; 3-5, globular chambers in final whorl. Aperture interiomarginal, umbilical, a high arch bordered by a thin rim-like lip or thick imperforate lip. Wall spinose; spines supported by spine collars which coalesce to form ridges.
This taxon: Usually 4 chambers in final whorl; Aperture a high symmetrical arch.

NB These concise distinguishing features statements are used in the tables of daughter-taxa to act as quick summaries of the differences between e.g. species of one genus.
They are being edited as the site is developed and comments on them are especially welcome.


Test low trochospiral consisting of 2½ whorls, lobulate in outline, chambers globular; in spiral view 4 globular, slightly embracing chambers in ultimate whorl, increasing rapidly in size, sutures straight and moderately depressed; in umbilical view 4 globular, slightly embracing chambers, increasing rapidly in size, sutures straight and moderately depressed, umbilicus large, open, enclosed by surrounding chambers, aperture umbilical, a broad arch bordered by an imperforate rim; in edge view chambers globular in shape, slightly embracing. [Spezzaferri et al. 2018]

Wall type:
Normal perforate, spinose, bulloides-type wall structure. Pore concentrations range from 70-100 pores/50 μm2 test surface area and pore diameters range from 0.7 μm to 0.9 μm. [Spezzaferri et al. 2018]

Maximum diameter of lectotype 0.67 mm. [Spezzaferri et al. 2018]

Character matrix
test outline:Lobatechamber arrangement:Trochospiraledge view:Concavo-convexaperture:Umbilical
sp chamber shape:Globularcoiling axis:Low-moderateperiphery:N/Aaperture border:Thin lip
umb chbr shape:Globularumbilicus:Wideperiph margin shape:Broadly roundedaccessory apertures:None
spiral sutures:Moderately depressedumb depth:Deepwall texture:Cancellateshell porosity:Macroperforate: >2.5µm
umbilical or test sutures:Strongly depressedfinal-whorl chambers:4-4 N.B. These characters are used for advanced search. N/A - not applicable

Biogeography and Palaeobiology

Geographic distribution

Cosmopolitan but more abundant in middle to high latitudes. Modern G. bulloides is a transitional to polar water species but it also occurs in cool upwelling regions (see Schiebel and Hemleben, 2017). [Spezzaferri et al. 2018]
Distribution is centered in temperate areas. Relative abundances decrease toward the tropics. The species is rare in equatorial areas. [Kennett & Srinivasan 1983] Middle latitudes, rare in low latitudes [Aze et al. 2011, based on Kennett & Srinivasan (1983)]

The species is abundant in productive waters along the Equator, in temperate regions and in all upwelling regions, often showing strong seasonality [Brummer & Kucera 2022]

Map of distribution from ForCenS database

Isotope paleobiology
Observations from plankton tows indicate calcification depths within the upper 30 to 50 m of the water column (e.g. Spero and Lea, 1996; Niebler and others, 1999). Stable isotopes measured on living and fossil G. bulloides have shown that this species secretes its shell out of equilibrium with respect to both carbon and oxygen isotopes (Curry and Matthews, 1981; Kahn and Williams, 1981; Deuser and Ross, 1989; Sautter and Thunell, 1991; Spero and Lea, 1996). Adjustments may be applied to δ13C and δ18O data from well-constrained size ranges to yield either oxygen isotope equilibrium or ambient δ13C of seawater ΣCO2 (Spero and Lea, 1996). [Spezzaferri et al. 2018]

Phylogenetic relations
This species evolved from G. archaeobulloides n. sp. probably in Zone O5. See G. archaeobulloides and G. officinalis entries for previous views on G. bulloides ancestry. [Spezzaferri et al. 2018]
Molecular Genotypes recognised (data from PFR2 database, June 2017). References: Darling et al. 2000; Darling et al. 2003; Darling & Wade 2008; Morard et al. 2013; Ujiié & Lipps 2009; Seears et al. 2012; Stewart et al. 2001.

Most likely ancestor: Globigerina archaeobulloides - at confidence level 4 (out of 5). Data source: Spezzaferri et al. 2018.
Likely descendants: Globigerina falconensis; Globigerina umbilicata; plot with descendants

Biostratigraphic distribution

Geological Range:
Notes: Upper Oligocene (Zone O5) to Recent. In the Lakes Entrance Oil Shaft, southeastern Australia, Li and McGowran (2000) record G. bulloides as common to abundant throughout Zones P22 (O6-O7) to N17/N18 (M13b-PL1a). It is common in Zone O7 in the Atlantic Slope Project corehole, western Atlantic Ocean (this study). [Spezzaferri et al. 2018]
Last occurrence (top): Extant. Data source: present in the plankton (SCOR WG138)
First occurrence (base): within O5 zone (26.93-28.09Ma, base in Chattian stage). Data source: Spezzaferri et al. 2018

Plot of occurrence data:

Primary source for this page: Spezzaferri et al. 2018 - Olig Atlas chap.6 p.183; Kennett & Srinivasan 1983, p.36


Banner, F. T. & Blow, W. H. (1960a). Some primary types of species belonging to the superfamily Globigerinaceae. Contributions from the Cushman Foundation for Foraminiferal Research. 11: 1-41. gs O

Bolli, H. M. & Bermudez, P. J. (1965). Zonation based on planktonic foraminifera of middle Miocene to Pliocene warm-water sediments. Bol. Informativo, Asoc. Venez. Geol., Min. Petrol. 8(5): 121-149. gs

Brummer, G-J. A. & Kucera, M. (2022). Taxonomic review of living planktonic foraminifera. Journal of Micropalaeontology. 41: 29-74. gs

Cifelli, R. (1982). Early Occurrences and some Phylogenetic Implications of Spiny, Honeycomb Textured Planktonic Foraminifera. Journal of Foraminiferal Research. 12(2): 105-115. gs

Curry, W. B. & Matthews, R. K. (1981). Equilibrium 18O fractionation in small size fraction planktic foraminifera: Evidence from recent Indian Ocean sediments. Marine Micropaleontology. 6: 327-337. gs

d'Orbigny, A. (1826). Tableau methodique de la Classe de Cephalopodes. Annales des Sciences Naturelles, Paris. 7: 245-314. gs

Darling, K. F. & Wade, C. M. (2008). The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes. Marine Micropaleontology. 67: 216-238. gs

Darling, K. F., Wade, C. M., Stewart, I. A., Kroon, D., Dingle, R. & Brown, A. J. (2000). Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers. Nature. 405: 43-47. gs

Darling, K. F., Kucera, M., Wade, C. M. , von Langen, P. & Pak, D. (2003). Seasonal distribution of genetic types of planktonic foraminifer morphospecies in the Santa Barbara Channel and its paleoceanographic implications. Paleoceanography. 18: 1-11. gs

Deuser, W. G. & Ross, E. H. (1989). Seasonally abundant planktonic foraminifera of the Sargasso Sea: Succession, deep-water fluxes, isotopic compositions, and paleoceanographic implications. Journal of Foraminiferal Research. 19: 268-293. gs

Earland, A. (1934). Foraminifera. Part III. The Falklands sector of the Antarctic (excluding South Georgia). Discovery Reports. 10: 1-208. gs

Galloway, J. J. & Wissler, S. G. (1927). Pleistocene foraminifera from the Lomita Quarry, Palos Verdes Hills, California. Journal of Paleontology. 1(1): 35-87. gs

Kahn, M. I. & Williams, D. F. (1981). Oxygen and carbon isotopic composition of living planktonic foraminifera from the northeast Pacific Ocean. Palaeogeography Palaeoclimatology Palaeoecology. 33: 47-69. gs

Kennett, J. P. & Srinivasan, M. S. (1983). Neogene Planktonic Foraminifera. Hutchinson Ross Publishing Co., Stroudsburg, Pennsylvania. 1-265. gs

Lam, A. & Leckie, R. M. (2020a). Late Neogene and Quaternary diversity and taxonomy of subtropical to temperate planktic foraminifera across the Kuroshio Current Extension, northwest Pacific Ocean. Micropaleontology. 66(3): 177-268. gs

Li, Q. & McGowran, B. (2000). Miocene foraminifera from Lakes Entrance Oil Shaft, Gippsland, southeastern Australia. Association of Australasian Palaeontologists, Memoirs. 22: 1-142. gs

Loeblich, A. & Tappan, H. (1994). Foraminifera of the Sahul shelf and Timor Sea. Cushman Foundation for Foraminiferal Research, Special Publication. 31: 1-661. gs O

Morard, R., Quillévéré, F., Escarguel, G. & Garidel-thoron, T. D. (2013). Ecological modeling of the temperature dependence of cryptic species of planktonic foraminifera in the Southern Hemisphere. Palaeogeography Palaeoclimatology Palaeoecology. 391: 13-33. gs

Niebler, H. S., Hubberten, H. W. & R. , G. (1999). Oxygen isotope values of planktic foraminifera: A tool for the reconstruction of surface water stratification. In, G. , F. & Werfer, G. (eds) Use of proxies in paleoceanography: Examples from the South Atlantic, Springer-Velag. Springer Verlag, 165-189. gs

Olsson, R. K., Hemleben, C., Huber, B. T. & Berggren, W. A. (2006a). Taxonomy, biostratigraphy, and phylogeny of Eocene Globigerina, Globoturborotalita, Subbotina, and Turborotalita. In, Pearson, P. N., Olsson, R. K., Hemleben, C., Huber, B. T. & Berggren, W. A. (eds) Atlas of Eocene Planktonic Foraminifera. Cushman Foundation for Foraminiferal Research, Special Publication . 41(Chap 6): 111-168. gs O

Pearson, P. N. & Wade, B. S. (2009). Taxonomy and stable isotope paleoecology of well-preserved planktonic foraminifera from the uppermost Oligocene of Trinidad. Journal of Foraminiferal Research. 39: 191-217. gs

Postuma, J. A. (1971). Manual of planktonic foraminifera. Elsevier for Shell Group, The Hague. 1-406. gs

Rögl, F. & Bolli, H. M. (1973). Holocene to Pleistocene planktonik foraminifera of LEG 15, site 147 (Cariaco Basin (Trench), Caribbean Sea) and their climatic interpretation. Initial Reports of the Deep Sea Drilling Project. 15: 553-579. gs O

Sautter, L. R. & Thunell, R. C. (1991). Planktonic foraminiferal response to upwelling and seasonal hydrographic conditions: sediment trap results from San Pedro Basin, southern California Bight. Journal of Foraminiferal Research. 21(4): 347-363. gs

Schiebel, R. & Hemleben, C. (2017). Planktic Foraminifers in the Modern Ocean. Springer-Verlag, Heidelberg. 1-358. gs

Seears, H. A., Darling, K. F. & Wade, C. M. (2012). Ecological partitioning and diversity in tropical planktonic foraminifera. BMC Evolutionary Biology. 12(54): 1-15. gs

Seiglie, G. A. (1963). Una nueva especie del genero Globigerina del Reciente de Venezuela. Oriente Univ. Inst. Oceanogr. Bol., Cumana Venezuela. 2(1): -. gs

Siccha, M. & Kucera, M. (2017). ForCenS, a curated database of planktonic foraminifera census counts in marine surface sediment samples. Scientific Data. 4(1): 1-12. gs

Spero, H. J. & Lea, D. W. (1996). Experimental determination of stable isotope variability in Globigerina bulloides: implications for paleoceanographic reconstructions. Marine Micropaleontology. 28: 231-246. gs

Spero, H. J. (1998). Life history and stable isotope geochemistry of planktonic foraminifera. In, Norris, R. D. & Corfield, R. M. (eds) Isotope paleobiology and paleoecology. The Palaeontological Society Papers . 4: 7-36. gs

Spezzaferri, S. & Premoli Silva, I. (1991). Oligocene planktonic foraminiferal biostratigraphy and paleoclimatic interpretation from Hole 538A, DSDP Leg 77, Gulf of Mexico. Palaeogeography Palaeoclimatology Palaeoecology. 83: 217-263. gs

Spezzaferri, S. (1994). Planktonic foraminiferal biostratigraphy and taxonomy of the Oligocene and lower Miocene in the oceanic record. An overview. Palaeontographia Italica. 81: 1-187. gs

Spezzaferri, S., Coxall, H. K., Olsson, R. K. & Hemleben, C. (2018a). Taxonomy, biostratigraphy, and phylogeny of Oligocene Globigerina, Globigerinella, and Quiltyella n. gen. In, Wade, B. S., Olsson, R. K., Pearson, P. N., Huber, B. T. & Berggren, W. A. (eds) Atlas of Oligocene Planktonic Foraminifera. Cushman Foundation for Foraminiferal Research, Special Publication . 46(Chap 6): 179-214. gs

Stewart, I. A., Darling, K. F., Kroon, D., Wade, C. M. & Troelstra, S. R. (2001). Genotypic variability in subarctic Atlantic planktic foraminifera. Marine Micropaleontology. 43: 143-153. gs

Ujiié, Y. & Lipps, J. H. (2009). Cryptic diversity in planktonic foraminifera in the northwest Pacific ocean. Journal of Foraminiferal Research. 39: 145-154. gs

Vénec-Peyré, M. -T. (2005). Les planches inédites de foraminifères d'Alcide d'Orbigny à l'aube de la micropaleontology: Des planches et des Mots. Paris. 1-302. gs

Vergnaud-Grazzini, C. (1976). Non-equilibrium isotopic compositions of shells of planktonic foraminifera in the Mediterranean Sea. Palaeogeography Palaeoclimatology Palaeoecology. 20: 263-276. gs

Missing or ambiguous references: Lam & Leckie 2020;


Globigerina bulloides compiled by the pforams@mikrotax project team viewed: 10-12-2023

Taxon Search:
Advanced Search

Short stable page link: Go to to create a permanent copy of this page - citation notes

Add Comment

* Required information
Captcha Image
Powered by Commentics

Comments (2)

Serena Conde

LoeblichTappan 1994 04-6 and 08-9 are not G. bulloides, but Globigerinoides tenellus. The texture, secondary aperature, and the shape of the primary aperture are distinct characteristics of G. tenellus.

Jeremy Young(UK)

thank you for pointing that out - I will move the images, Loeblich & Tappan 1994 has a nice set of SEMs but the identifications were not entirely reliable

Jeremy Young