Brummer & Kucera (2022) argue that Neoacarinina Thompson 1973 is likely to be a senior synonym of Globoconella, and so nomenclatural revision may be needed. Consequently they retain G. inflata in Globorotalia.
Catalog entries: Globigerina inflata, Globorotalia oscitans, Globorotalia inflata praeinflata, Globigerina nipponica
Type images:Distinguishing features:
Parent taxon (Globoconella): Globorotaliids having a high-arched aperture
This taxon: Like Gr. (G.) puncticulata but <4 chambers in final whorl, greater test inflation, a broadly rounded periphery, and a larger, high-arched, aperture.
Morphology:
Wall type:
Size:
Character matrix
test outline: | Subquadrate | chamber arrangement: | Trochospiral | edge view: | Planoconvex | aperture: | Umbilical-extraumbilical |
sp chamber shape: | Crescentic | coiling axis: | Low | periphery: | N/A | aperture border: | Thin lip |
umb chbr shape: | Subtriangular | umbilicus: | Narrow | periph margin shape: | Broadly rounded | accessory apertures: | None |
spiral sutures: | Flush | umb depth: | Shallow | wall texture: | Smooth | shell porosity: | Macroperforate: >2.5µm |
umbilical or test sutures: | Weakly depressed | final-whorl chambers: | 3-3.5 | N.B. These characters are used for advanced search. N/A - not applicable |
In modern oceans an abundant, temperate water, species [SCOR WG138]
Geographic distribution
Most likely ancestor: Globoconella puncticulata - at confidence level 3 (out of 5). Data source: Kennett & Srinivasan 1983, fig. 13, Wei 1994, fig.1.
Geological Range:
Last occurrence (top): Extant. Data source: present in the plankton (SCOR WG138)
First occurrence (base): within PL5 [Atl.] zone (2.39-3.13Ma, base in Piacenzian stage). Data source: Wei 1994 (quoted age converted to modern zone)
Plot of occurrence data:
Primary source for this page: Kennett & Srinivasan 1983, p.118
Bandy, O. L. (1975). Messinian evaporite deposition and the Miocene/Pliocene boundary, Pasquasia-Capodarso Sections, Sicily. In, Saito, T. & Burckle, L. H. (eds) Late Neogene Epoch Boundaries. American Museum Natural History Micropaleontology Press, New York 49-63. gs Banner, F. T. & Blow, W. H. (1967). The origin, evolution and taxonomy of the foraminiferal genus Pulleniatina Cushman, 1927. Micropaleontology. 13(2): 133-162. gs Brummer, G-J. A. & Kucera, M. (2022). Taxonomic review of living planktonic foraminifera. Journal of Micropalaeontology. 41: 29-74. gs d'Orbigny, A. (1839b). Foraminifères des Iles Canaries. In, Barker-Webb, P. & Berthelot, S. (eds) Histoire naturelle des Iles Canaries. 120-146. gs Kennett, J. P. & Srinivasan, M. S. (1983). Neogene Planktonic Foraminifera. Hutchinson Ross Publishing Co., Stroudsburg, Pennsylvania. 1-265. gs Kennett, J. P. & Vella, P. (1975). Late Cenozoic planktonic foraminifera and Paleoceanography at DSDP site 284 in the cool subtropical South Pacific. Initial Reports of the Deep Sea Drilling Project. 29: 769-799. gs Lam, A. & Leckie, R. M. (2020a). Late Neogene and Quaternary diversity and taxonomy of subtropical to temperate planktic foraminifera across the Kuroshio Current Extension, northwest Pacific Ocean. Micropaleontology. 66(3): 177-268. gs Maiya, S., Saito, T. & Sato, T. (1976). Late Cenozoic planktonic foraminiferal biostratigraphy of northwest Pacific sedimentary sequences. In, Takayanagi, Y. & Saito, T. (eds) Progress in Micropaleontology. Micropaleontology Press, New York 395-422. gs Malmgren, B. A. & Kennett, J. P. (1981). Phyletic gradualism in a Late Cenozoic planktonic foraminiferal lineage; DSDP site 284, southwest Pacific. Paleobiology. 7(2): 230-240. gs Morard, R., Quillévéré, F., Douady, C. J., de Vargas, C., de Garidel-Thoron, T. & Escarguel, G. (2011). Worldwide genotyping in the planktonic foraminifer Globoconella inflata: Implications for life history and paleoceanography. PLoS One. 6: e26665-. gs Morard, R., Quillévéré, F., Escarguel, G. & Garidel-thoron, T. D. (2013). Ecological modeling of the temperature dependence of cryptic species of planktonic foraminifera in the Southern Hemisphere. Palaeogeography Palaeoclimatology Palaeoecology. 391: 13-33. gs Schiebel, R. & Hemleben, C. (2017). Planktic Foraminifers in the Modern Ocean. Springer-Verlag, Heidelberg. 1-358. gs Siccha, M. & Kucera, M. (2017). ForCenS, a curated database of planktonic foraminifera census counts in marine surface sediment samples. Scientific Data. 4(1): 1-12. gs Ujiié, Y. & Lipps, J. H. (2009). Cryptic diversity in planktonic foraminifera in the northwest Pacific ocean. Journal of Foraminiferal Research. 39: 145-154. gs Vergnaud-Grazzini, C. (1976). Non-equilibrium isotopic compositions of shells of planktonic foraminifera in the Mediterranean Sea. Palaeogeography Palaeoclimatology Palaeoecology. 20: 263-276. gs Wei, K. -Y. (1994b). Stratophenetic tracing of phylogeny using SIMCA pattern recognition technique: a case study of the late Neogene planktic foraminifera Globoconella clade. Paleobiology. 20(1): 52-65. gsReferences:
![]() |
Globoconella inflata compiled by the pforams@mikrotax project team viewed: 5-12-2023
Short stable page link: https://mikrotax.org/pforams/index.php?id=104078 Go to Archive.is to create a permanent copy of this page - citation notes |