Sub-taxa & variants (time control age-window is: 0-800Ma)![]() | ||||
truncatulinoides & variants | ||||
![]() | ![]() | ![]() | Globorotalia excelsa![]() Like G. truncatulinoides but with a more acute peripheral keel, a more open umbilicus and fewer pustules covering the surface |
Catalog entries: Rotalina truncatulinoides, Globorotalia (Globorotalia) truncatulinoides pachytheca
Type images:Distinguishing features:
Parent taxon (truncatulinoides lineage): G. crasula - crassaformis - tosaensis - truncatulinoides lineage, predominantly conicotruncate
This taxon: Like G. tosaensis but with a pronounced keel and a more open umbilicus
Morphology:
Wall type:
Character matrix
test outline: | Subcircular | chamber arrangement: | Trochospiral | edge view: | Planoconvex | aperture: | Umbilical-extraumbilical |
sp chamber shape: | Crescentic | coiling axis: | Low | periphery: | Single keel | aperture border: | Thin lip |
umb chbr shape: | Subtriangular | umbilicus: | Narrow | periph margin shape: | Subangular | accessory apertures: | None |
spiral sutures: | Flush | umb depth: | Shallow | wall texture: | Smooth | shell porosity: | Macroperforate: >2.5µm |
umbilical or test sutures: | Weakly depressed | final-whorl chambers: | 5-5 | N.B. These characters are used for advanced search. N/A - not applicable |
In modern oceans an abundant, temperate water, species [SCOR WG138]
Geographic distribution
Most likely ancestor: Globorotalia tosaensis - at confidence level 3 (out of 5). Data source: Kennett & Srinivasan 1983, fig 16; Stewart 2003 fig. 6.10; Aze et al. 2011, appendix 5.
Likely descendants: Globorotalia cavernula;
plot with descendants
Geological Range:
Notes: The evolutionary appearance of Gr. (T.) truncatulinoides marks the base of N22 and is generally considered to approximate the Pliocene-Pleistocene boundary.
Last occurrence (top): Extant. Data source: present in the plankton (SCOR WG138)
First occurrence (base): near top of PL6 [Atl.] zone (90% up, 1.9Ma, in Gelasian stage). Data source: Wade et al. (2011), additional event; position within zone determined by linear interpolation from data in table 1 of Wade et al. (2011).
Plot of occurrence data:
Primary source for this page: Kennett & Srinivasan 1983, p.148
Crundwell, M. P. (2018). Globoconella pseudospinosa, n. sp.: A new Early Pliocene planktonic foraminifera from the Southwest Pacific. Journal of Foraminiferal Research. 48(4): 288-300. gs d'Orbigny, A. (1839b). Foraminifères des Iles Canaries. In, Barker-Webb, P. & Berthelot, S. (eds) Histoire naturelle des Iles Canaries. 120-146. gs Darling, K. F. & Wade, C. M. (2008). The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes. Marine Micropaleontology. 67: 216-238. gs de Vargas, C., Renaud, S., Hilbrecht, H. & Pawlowski, J. (2001). Pleistocene adaptive radiation in Globorotalia truncatulinoides: genetic, morphologic, and environmental evidence. Paleobiology. 27: 104-125. gs Kennett, J. P. & Geitzenauer, K. R. (1969). The Pliocene-Pleistocene boundary in a South Pacific deep-sea core. Nature. 224(5222): 899-901. gs Kennett, J. P. & Srinivasan, M. S. (1983). Neogene Planktonic Foraminifera. Hutchinson Ross Publishing Co., Stroudsburg, Pennsylvania. 1-265. gs Lam, A. & Leckie, R. M. (2020a). Late Neogene and Quaternary diversity and taxonomy of subtropical to temperate planktic foraminifera across the Kuroshio Current Extension, northwest Pacific Ocean. Micropaleontology. 66(3): 177-268. gs Loeblich, A. & Tappan, H. (1994). Foraminifera of the Sahul shelf and Timor Sea. Cushman Foundation for Foraminiferal Research, Special Publication. 31: 1-661. gs O Morard, R., Quillévéré, F., Escarguel, G. & Garidel-thoron, T. D. (2013). Ecological modeling of the temperature dependence of cryptic species of planktonic foraminifera in the Southern Hemisphere. Palaeogeography Palaeoclimatology Palaeoecology. 391: 13-33. gs Postuma, J. A. (1971). Manual of planktonic foraminifera. Elsevier for Shell Group, The Hague. 1-406. gs Quillévéré, F. et al. (2013). Global scale same-specimen morpho-genetic analysis of Truncorotalia truncatulinoides: A perspective on the morphological species concept in planktonic foraminifera. Palaeogeography Palaeoclimatology Palaeoecology. 391: 2-12. gs Shackleton, N. J. & Vincent, E. (1978). Oxygen and carbon isotope studies in Recent Foraminifera from the southeast Indian Ocean. Marine Micropaleontology. 3: 1-13. gs Siccha, M. & Kucera, M. (2017). ForCenS, a curated database of planktonic foraminifera census counts in marine surface sediment samples. Scientific Data. 4(1): 1-12. gs Ujiié, Y. & Lipps, J. H. (2009). Cryptic diversity in planktonic foraminifera in the northwest Pacific ocean. Journal of Foraminiferal Research. 39: 145-154. gs Ujiié, Y., de Garidel-Thoron, T., Watanabe, S., Wiebe, P. & de Vargas, C. (2010). Coiling dimorphism within a genetic type of the planktonic foraminifer Globorotalia truncatulinoides. Marine Micropaleontology. 77: 145-153. gs Vergnaud-Grazzini, C. (1976). Non-equilibrium isotopic compositions of shells of planktonic foraminifera in the Mediterranean Sea. Palaeogeography Palaeoclimatology Palaeoecology. 20: 263-276. gs Wade, B. S., Pearson, P. N., Berggren, W. A. & Pälike, H. (2011). Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth-Science Reviews. 104: 111-142. gsReferences:
![]() |
Globorotalia truncatulinoides compiled by the pforams@mikrotax project team viewed: 3-12-2023
Short stable page link: https://mikrotax.org/pforams/index.php?id=104136 Go to Archive.is to create a permanent copy of this page - citation notes |