We take Blow’s (1979:176) view that Globorotaloides hexagonus descended from G. variabilis in the mid- to late Oligocene (Fig. 4.1). We note, however, that this is only a tentative model because G. variabilis and G. hexagonus morphotypes are rare at that time and the number of specimens available for comparison is very limited. Moreover, there is a large degree of morphological similarity between Globorotaloides hexagonus and G. eovariabilis such that G. eovariabilis could be the true ancestor of G. hexagonus and G. variabilis a phylogenetic side branch. As discussed above, it is possible that G. hexagonus might be the senior synonym of G. eovariabilis, although, as illustrated on Plate 4.6, late Oligocene G. hexagonus morphotypes are considerably larger than Eocene to lower Oligocene G. eovariabilis. Living G. hexagonus has occasionally been observed with a bulla. [Coxall & Spezzaferri 2018] Among the living Globorotaloides there appear to be two species, G. hexagonus and a less well known morphotype that can be assigned to ‘Globorotalia (Clavatorella) oveyi’ Buckley, 1973 (M. Kučera, personal communication). We follow Kennett and Srinivasan (1983) in considering the latter morphotype as belonging to Globorotaloides. Globorotaloides oveyi differs from G. hexagonus in having distinctly curved sutures, more numerous chambers in the final whorl and pronounced apertural lips (reminiscent of Clavatorella bermudezi Lipps, 1964). We find no evidence of Globorotaloides oveyi in the Oligocene. In both modern species of Globorotaloides, tooth-like corners of relict apertural lips project into the umbilicus. Based on the presence of these ‘tooth-like projections’, Parker (1962) placed hexagonus in genus Globoquadrina. As discussed by Lipps (1964), however, the similarities with Globoquadrina end there since G. hexagonus always possesses a flattened spiral and typically also has a more highly cancellate wall. Hemleben and others (1989) describe G. hexagonus as an ‘Indo-Pacific’ species, although this restriction is uncertain. Several studies have suggested that the taxon disappeared from the Atlantic Ocean in the Pleistocene, approximately 60,000 years ago B.P. (Pflaumann, 1986; Kučera and others, 2005), whereas other studies have found G. hexagonus in core-top samples from the Caribbean (Saunders and others, 1973), and equatorial Atlantic (Weaver and Raymo, 1989), suggesting it does occur in the Holocene. Apparently this species has narrow environmental preferences. Its occurrence is likely linked to temperature and/or nutrient content of sub-thermocline water masses, which it evidently prefers (see Spezzaferri and Premoli Silva, 1991; Ortiz and others, 1996), potentially even at an entire ocean-scale. [Coxall & Spezzaferri 2018]
Catalog entries: Globigerina hexagona, Globigerina clippertonensis
Type images:Distinguishing features:
Parent taxon (Globorotaloides): Trochospiral test, ovate to spherical chambers; final chamber often small/bulla-like; cancellate wall.
This taxon: Very low trochospiral, spiral side almost flat, equatorial periphery lobulate, chambers spherical
Morphology:
Wall type:
Character matrix
test outline: | Lobate | chamber arrangement: | Pseudoplanispiral | edge view: | Equally biconvex | aperture: | Umbilical-extraumbilical |
sp chamber shape: | Globular | coiling axis: | Very low | periphery: | N/A | aperture border: | Thick lip |
umb chbr shape: | Globular | umbilicus: | Wide | periph margin shape: | Broadly rounded | accessory apertures: | N/A |
spiral sutures: | Moderately depressed | umb depth: | Shallow | wall texture: | Cancellate | shell porosity: | Macroperforate: >2.5µm |
umbilical or test sutures: | Moderately depressed | final-whorl chambers: | 4.5-6.5 | N.B. These characters are used for advanced search. N/A - not applicable |
Geographic distribution
Most likely ancestor: Globorotaloides variabilis - at confidence level 2 (out of 5). Data source: Kennett & Srinivasan 1983.
Likely descendants: Clavatorella bermudezi; Globorotaloides oveyi;
plot with descendants
Geological Range:
Notes: Upper Oligocene Zone O4 (rare) (Quilty, 1976; Spezzaferri and Premoli Silva, 1991; Spezzaferri, 1994, this study: Pl. 4.6, Figs. 13-15) to Recent (Hemleben and others, 1989; Ortiz and others, 1996; Kučera and others, 2005). The holotype is from a seafloor sample (“dark green clay with abundant foraminifera”) collected off Long Beach, California at a water depth of 884 m. The lowest occurrence of G. hexagonus is poorly constrained and is difficult to determine due to a general scarcity of the taxon at the beginning of its range as well as similarities with G. eovariabilis. Spezzaferri (1994) illustrated a specimen recorded as “Globorotaloides aff. G. hexagonus” from Zone P22 (O6/O7) of ODP Site 667 (Spezzaferri, 1994, pl. 36, figs. 1a-c) that we suggest is attributable to G. hexagonus. Table 7 of Spezzaferri’s article shows Globorotaloides aff. G. hexagonus ranging from Subzone P21a (O4) to lower Miocene Zone N5 (M2) at this Atlantic Ocean Site. At DSDP Site 354, also in the low latitude Atlantic Ocean, this taxon is recorded as first appearing in Zone P22. Although some of Spezzaferri’s Globorotaloides aff. G. hexagonus can now be placed in G. atlanticus, new observations confirm that Subzone P21a (Zone O3/O4) marks the lowest occurrence.
Today, G. hexagonus is described as an “Indo-Pacific species”, having reportedly become extinct in the Atlantic approximately 60,000 years ago B.P. (Pflaumann, 1986; Hemleben and others, 1989; Kučera and others, 2005). [Coxall & Spezzaferri 2018]
Last occurrence (top): Extant. Data source: present in the plankton (SCOR WG138)
First occurrence (base): within O4 zone (28.09-29.18Ma, base in Rupelian stage). Data source: Coxall & Spezzaferri 2018
Plot of occurrence data:
Primary source for this page: Coxall & Spezzaferri 2018 - Olig Atlas chap.4 p.98; Kennett & Srinivasan 1983, p.216
Aze, T. et al. (2011). A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biological Reviews. 86: 900-927. gs Birch, H., Coxall, H. K., Pearson, P. N., Kroon, D. & O’Regan, M. (2013). Planktonic foraminifera stable isotopes and water column structure: Disentangling ecological signals. Marine Micropaleontology. 101: 127-145. gs Blow, W. H. & Banner, F. T. (1962). The mid-Tertiary (Upper Eocene to Aquitanian) Globigerinaceae. In, Eames, F. E., Banner, F. T., Blow, W. H. & Clarke, W. J. (eds) Fundamentals of mid-Tertiary Stratigraphical Correlation. Cambridge University Press, Cambridge 61-151. gs Blow, W. H. (1969). Late middle Eocene to Recent planktonic foraminiferal biostratigraphy. In, Bronnimann, P. & Renz, H. H. (eds) Proceedings of the First International Conference on Planktonic Microfossils, Geneva, 1967. E J Brill, Leiden 380-381. gs Blow, W. H. (1979). The Cainozoic Globigerinida: A study of the morphology, taxonomy, evolutionary relationships and stratigraphical distribution of some Globigerinida (mainly Globigerinacea). E. J. Brill, Leiden. 2: 1-1413. gs Brummer, G-J. A. & Kucera, M. (2022). Taxonomic review of living planktonic foraminifera. Journal of Micropalaeontology. 41: 29-74. gs Buckley, H. A. (1973). Globorotalia (Clavatorella) oveyi n. sp., Premiere mention Récente d’un sous-genre de Foraminifere du Neogene. Revue de Micropaléontologie. 16: 168-172. gs Chaisson, W. P. & Leckie, R. M. (1993). High-resolution Neogene planktonic foraminifer biostratigraphy of Site 806, Ontong Java Plateau (Western Equatorial Pacific). Proceedings of the Ocean Drilling Program, Scientific Results. 130: 137-178. gs Coxall, H. K. & Spezzaferri, S. (2018). Taxonomy, biostratigraphy, and phylogeny of Oligocene Catapsydrax, Globorotaloides, and Protentelloides. In, Wade, B. S., Olsson, R. K., Pearson, P. N., Huber, B. T. & Berggren, W. A. (eds) Atlas of Oligocene Planktonic Foraminifera. Cushman Foundation for Foraminiferal Research, Special Publication . 46(Chap 4): 79-124. gs Hemleben, C., Spindler, M. & Anderson, O. (1989). Modern Planktonic Foraminifera. Springer-Verlag, New York. -. gs Jenkins, D. G. & Orr, W. N. (1972). Planktonic foraminiferal biostratigraphy of the east equatorial Pacific--DSDP Leg 9. Initial Reports of the Deep Sea Drilling Project. 9: 1059-1193. gs O Jenkins, D. G. (1960). Planktonic foraminifera from the Lakes Entrance oil shaft, Victoria, Australia. Micropaleontology. 6: 345-371. gs Keller, G. (1985). Depth stratification of planktonic foraminifers in the Miocene Ocean. In, Kennett, J. P. (ed.) The Miocene Ocean: Paleoceanography and Biogeography. GSA Memoir . 163: 1-337. gs Kennett, J. P. & Srinivasan, M. S. (1983). Neogene Planktonic Foraminifera. Hutchinson Ross Publishing Co., Stroudsburg, Pennsylvania. 1-265. gs Lam, A. & Leckie, R. M. (2020a). Late Neogene and Quaternary diversity and taxonomy of subtropical to temperate planktic foraminifera across the Kuroshio Current Extension, northwest Pacific Ocean. Micropaleontology. 66(3): 177-268. gs Lipps, J. H. (1964). Miocene planktonic foraminifera from Newport Bay, California. Tulane Studies in Geology and Paleontology. 2: 109-133. gs O Natland, M. L. (1938). New Species of Foraminifera from off the West Coast of North America and from the Later Tertiary of the Los Angeles Basin. Bulletin of the Scripps Institute of Oceanography, Tech. Ser. 4(5): 137-164. gs Norris, R. D. (1998). Planktonic foraminifer biostratigraphy: Eastern Equatorial Atlantic. Proceedings of the Ocean Drilling Program, Scientific Results. 159: 445-479. gs O Ortiz, J. D., Mix, A. C., Rugh, W., Watkins, J. M. & Collier, R. W. (1996). Deep-dwelling planktonic foraminifera of the northeastern Pacific Ocean reveal environmental control of oxygen and carbon isotopic disequilibria. Geochimica et Cosmochimica Acta. 60: 4509-4523. gs Parker, F. L. (1962). Planktonic foraminiferal species in Pacific sediments. Micropaleontology. 8(2): 219-254. gs Pearson, P. N. et al. (2001a). Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature. 413: 481-487. gs Pflaumann, U. (1986). Sea-surface temperatures during the last 750,000 years in the eastern equatorial Atlantic: planktonic foraminiferal record of ‘‘Meteor’’-cores 13519, 13521, and 16415. “Meteor” Forschungsergebnisse. 40: 137-161. gs Poore, R. Z. (1981). Miocene through Quaternary planktonic foraminifers from offshore southern California and Baja California. Initial Reports of the Deep Sea Drilling Project. 63: 415-436. gs Quilty, P. G. (1976). Planktonic foraminifera DSDP Leg 34, Nazca Plate. Initial Reports of the Deep Sea Drilling Project. 34: 629-703. gs O Saito, T., Thompson, P. R. & Breger, D. (1976). Skeletal ultra-microstructure of some elongate-chambered planktonic foraminifera and related species. In, Takayanagi, Y. & Saito, T. (eds) Progress in Micropaleontology, Special Publication. Micropaleontology Press, The American Museum of Natural History, New York 278-304. gs Saunders, J. B. et al. (1973). Paleocene to recent microfossil distribution in the marine and land areas of the Caribbean - planktonic foraminifera. Initial Reports of the Deep Sea Drilling Project. 15(Back Pocket Foldout ): 773-793. gs Siccha, M. & Kucera, M. (2017). ForCenS, a curated database of planktonic foraminifera census counts in marine surface sediment samples. Scientific Data. 4(1): 1-12. gs Spezzaferri, S. & Premoli Silva, I. (1991). Oligocene planktonic foraminiferal biostratigraphy and paleoclimatic interpretation from Hole 538A, DSDP Leg 77, Gulf of Mexico. Palaeogeography Palaeoclimatology Palaeoecology. 83: 217-263. gs Spezzaferri, S. (1994). Planktonic foraminiferal biostratigraphy and taxonomy of the Oligocene and lower Miocene in the oceanic record. An overview. Palaeontographia Italica. 81: 1-187. gs Spezzaferri, S. (1995). Planktonic foraminiferal paleoclimatic implications across the Oligocene-Miocene transition in the oceanic record (Atlantic, Indian, and South Pacific). Palaeogeography Palaeoclimatology Palaeoecology. 114: 43-74. gs Srinivasan, M. S. & Kennett, J. P. (1975c). The status of Bolliella, Beella, Protentella and related planktonic foraminifera based on surface ultrastructure. Journal of Foraminiferal Research. 5(3): 155-165. gs Weaver, P. P. E. & Raymo, M. E. (1989). Late Miocene to Holocene planktonic foraminifers from the equatorial Atlantic, Leg 108,. Proceedings of the Ocean Drilling Program, Scientific Results. 108: 71-91. gsReferences:
![]() |
Globorotaloides hexagonus compiled by the pforams@mikrotax project team viewed: 10-12-2023
Short stable page link: https://mikrotax.org/pforams/index.php?id=104143 Go to Archive.is to create a permanent copy of this page - citation notes |