pforams@mikrotax - Neogloboquadrina dutertrei pforams@mikrotax - Neogloboquadrina dutertrei

Neogloboquadrina dutertrei


Classification: pf_cenozoic -> Globorotaliidae -> Neogloboquadrina -> Neogloboquadrina dutertrei
Sister taxa: N. pachyderma, N. incompta, N. inglei ⟩⟨ N. dutertrei, N. humerosa, N. acostaensis, N. atlantica, N. sp.


3D models from The Foraminarium, hosted on sketchfab

Taxonomy

Citation: Neogloboquadrina dutertrei (d’Orbigny, 1839)
taxonomic rank: species
Basionym: Globigerina dutertrei
Synonyms:
Variants:
 
Taxonomic discussion: Variablity in this species is discussed in Parker (1962) and the synonymies proposed there have been widely followed.

Catalog entries: Globigerina dutertrei, Globoquadrina asanoi, Globigerina eggeri, Globigerina eggeriformis, Globigerina galapagosensis, Globigerina hancocki, Globigerina helicina, Globoquadrina himiensis, Globigerina hybrida, Globoquadrina kagaensis, Globigerina pyriporosa, Globigerina partidiana, Globigerina subcretacea Chapman, Globigerina rotundata, Neogloboquadrina dutertrei blowi

Type images:

Distinguishing features:
Parent taxon (Neogloboquadrina): Cancellate wall; umbilical-extraumbilical aperture:
This taxon: 5-6 inflated chambers in final whorl, umbilicus open, broad and deep; umbilical plates often present

NB These concise distinguishing features statements are used in the tables of daughter-taxa to act as quick summaries of the differences between e.g. species of one genus.
They are being edited as the site is developed and comments on them are especially welcome.

Description


Morphology:
Test globose, trochospiral, spire flat to slightly convex, 5 to 6 inflated chambers in the final whorl; sutures on spiral side almost radial to slightly curved, depressed; on umbilical side almost radial, depressed; surface uniformly moderately perforate, with distinct pore pits in tropical forms, pore pits partly or fully constricted by growth of euhedral calcite crystals in subtropical forms; umbilicus open, moderately broad and deep; aperture umbilical, umbilical-extraumbilical in young specimens; tooth-like umbilical plates often present. [Kennett & Srinivasan 1983]

Wall type:
Non-spinose; Cancellate [Aze 2011]

Size:
>250µm

Character matrix
test outline:Lobatechamber arrangement:Trochospiraledge view:Equally biconvexaperture:Umbilical-extraumbilical
sp chamber shape:Globularcoiling axis:Lowperiphery:N/Aaperture border:-
umb chbr shape:Globularumbilicus:Wideperiph margin shape:Broadly roundedaccessory apertures:None
spiral sutures:Weakly depressedumb depth:Deepwall texture:Cancellateshell porosity:Macroperforate: >2.5µm
umbilical or test sutures:Moderately depressedfinal-whorl chambers:5-6 N.B. These characters are used for advanced search. N/A - not applicable

Biogeography and Palaeobiology


Geographic distribution

Tropical to warm subtropical. [Kennett & Srinivasan 1983] Low latitudes [Aze et al. 2011, based on Kennett & Srinivasan (1983)]

In modern oceans an abundant, warm water, species [SCOR WG138]

Map of distribution from ForCenS database

Isotope paleobiology
Aze et al. 2011 ecogroup 3 - Open ocean thermocline. Based on light δ13C and relatively heavy δ18O. Sources cited by Aze et al. 2011 (appendix S3): Kahn (1979); Shackleton & Vincent (1978)

Phylogenetic relations
Attempts have been made by several workers to correlate variation in morphological features of N. dutertrei (height of the spire, pore density, and presence or absence of umbilical plates) with water-mass conditions. Bradshaw (1959) regarded the high-spired forms to be characteristic of warm water and the forms with low-spired tests characteristic of cooler water. Bolli (1970) suggested that the high-spired form of N dutertrei may be a warm-water variant. Bandy et al. (1967) differentiated two subspecies within the Neogloboquadrina dutertrei group: N dutertrei (d'Orbigny) dutertrei (d'Orbigny), distinguished by the presence of umbilical plates, and N dutertrei (d'Orbigny) subcretacea (Lomnicki), distinguished by the absence of umbilical plates. They considered that the forms with umbilical plates are characteristic of tropical waters. Parker (1962) gave convincing evidence of gradtion between "Globigerina" eggeri Rhumbler 1910 and "Globigerina" subcretacea Lomnicki, 1901, and placed them together in synonymy with "Globigerina" dutertrei d'Orbigny, 1839. Zobel (1968) distinguished four phenotypic variants within "Globigerina" dutertrei d'Orbigny and suggested that each was typical of a certain temperature range.
Stereoscan examination of N dutertrei indicates two kinds of surface ultramicrostructure, which are restricted to different latitudinal ranges. Forms belonging to N. dutertrei Group A, with a relatively thin wall, high pore concentration, and pitted wall surface with micro-crystals, are typical of tropical areas; forms belonging to N. dutertrei Group B, with the characteristic rosette pattern formed by concentric arrangement of euhedral crystals on each chamber, are typical of cool subtropical areas (Srinivasan and Kennett, 1976). Integration through forms with intermediate ultrarnicrostructures indicates that the two groups are phenotypic variants of one taxon. [Kennett & Srinivasan 1983]

Molecular Genotypes recognised (data from PFR2 database, June 2017). References: André et al. 2014; Darling et al. 1997; Darling et al. 2003; Ujiié & Lipps 2009; Seears et al. 2012.

Most likely ancestor: Neogloboquadrina humerosa - at confidence level 3 (out of 5). Data source: Kennett & Srinivasan 1983, fig 21; Aze et al. 2011.

Biostratigraphic distribution

Geological Range:
Last occurrence (top): Extant. Data source: present in the plankton (SCOR WG138)
First occurrence (base): within N19 zone (4.37-5.20Ma, base in Zanclean stage). Data source: Chaisson & Pearson (1997)

Plot of occurrence data:

Primary source for this page: Kennett & Srinivasan 1983, p.196

References:

Bandy, O. L., Frerichs, W. E. & Vincent, E. (1967a). Origin, development, and geologic significance of Neogloboquadrina Bandy, Frerichs, and Vincent, gen. nov. Contributions from the Cushman Foundation for Foraminiferal Research. 18(4): 152-157. gs

Banner, F. T. & Blow, W. H. (1960a). Some primary types of species belonging to the superfamily Globigerinaceae. Contributions from the Cushman Foundation for Foraminiferal Research. 11: 1-41. gs O

Bolli, H. M. (1970). The foraminifera of sites 23-31, leg 4. Initial Reports of the Deep Sea Drilling Project. 4: 577-643. gs

Bradshaw, J. S. (1959). Ecology of living planktonic foraminifera in the north and equatorial Pacific Ocean. Contributions from the Cushman Foundation for Foraminiferal Research. 10(2): 25-64. gs

Chapman, F. (1902). On the foraminifera collected round the Funafuti Atoll from shallow and moderately deep water. Zoological Journal of the Linnean Society. 28: 379-417. gs O

d'Orbigny, A. (1826). Tableau methodique de la Classe de Cephalopodes. Annales des Sciences Naturelles, Paris. 7: 245-314. gs

d'Orbigny, A. (1839a). Foraminiferes. In, de la Sagra, R. (ed.) Histoire physique et naturelle de l'Ile de Cuba. A. Bertrand, Paris, France 1-224. gs

Darling, K. F., Wade, C. M., Kroon, D. & Brown, A. J. L. (1997). Planktic foraminiferal molecular evolution and their polyphyletic origins from benthic taxa. Marine Micropaleontology. 30: 251-266. gs

Darling, K. F., Kucera, M., Wade, C. M. , von Langen, P. & Pak, D. (2003). Seasonal distribution of genetic types of planktonic foraminifer morphospecies in the Santa Barbara Channel and its paleoceanographic implications. Paleoceanography. 18: 1-11. gs

Egger, J. G. (1857). Die Foraminiferen der Miocän-Schichten bei Ortenburg in Nieder-Bayern. Neues Jahrbuch für Mineralogie, Geognosie, Geologie, und Petrafaktenkunde. 266-311. gs O

Fornasini, C. (1898). Le Globigerine fossili d'Italia. Palaeontographia Italica. 4: 203-216. gs

Kahn, I. M. (1979). Non-equilibrium oxygen and carbon isotopic fractionation in tests of living planktonic foraminifera. Oceanologica Acta. 2: 195-208. gs

Kennett, J. P. & Srinivasan, M. S. (1983). Neogene Planktonic Foraminifera. Hutchinson Ross Publishing Co., Stroudsburg, Pennsylvania. 1-265. gs

Lam, A. & Leckie, R. M. (2020a). Late Neogene and Quaternary diversity and taxonomy of subtropical to temperate planktic foraminifera across the Kuroshio Current Extension, northwest Pacific Ocean. Micropaleontology. 66(3): 177-268. gs

Loeblich, A. & Tappan, H. (1994). Foraminifera of the Sahul shelf and Timor Sea. Cushman Foundation for Foraminiferal Research, Special Publication. 31: 1-661. gs O

Lomnicki, J. R. , von (1901). Einige Bemerkungen Zum Aufsatz: Die Miocanen Foraminiferen in der Umgebung von Kolomea,. Verhandlungen des Naturforschenden Vereins in Brunn. 39: 15-18. gs

Maiya, S., Saito, T. & Sato, T. (1976). Late Cenozoic planktonic foraminiferal biostratigraphy of northwest Pacific sedimentary sequences. In, Takayanagi, Y. & Saito, T. (eds) Progress in Micropaleontology. Micropaleontology Press, New York 395-422. gs

McCulloch, I. A. (1977). Qualitative observations on Recent foraminiferal tests with emphasis on the eastern Pacific (3 vols). University of Southern California, Los Angeles. -. gs

Norris, R. D. (1998). Planktonic foraminifer biostratigraphy: Eastern Equatorial Atlantic. Proceedings of the Ocean Drilling Program, Scientific Results. 159: 445-479. gs O

Parker, F. L. (1962). Planktonic foraminiferal species in Pacific sediments. Micropaleontology. 8(2): 219-254. gs

Postuma, J. A. (1971). Manual of planktonic foraminifera. Elsevier for Shell Group, The Hague. 1-406. gs

Rhumbler, L. (1901). Nordische Plankton-Foraminiferen. In, Brandt, K. (ed.) Nordische Plankton. Lipsius und Tischer, Kiel Lief. 1, 14: 1-32. gs

Rhumbler, L. (1911). Die Foraminiferen (Thalamophoren) der Plankton-Expedition: Teil 1. Die allgemeinen Organisations verhaltnisse der Foraminiferen, Plankton Expedition Humbold-Stiftung, Ergeben 3, L. C 1. . 1-331. gs

Rögl, F. & Bolli, H. M. (1973). Holocene to Pleistocene planktonik foraminifera of LEG 15, site 147 (Cariaco Basin (Trench), Caribbean Sea) and their climatic interpretation. Initial Reports of the Deep Sea Drilling Project. 15: 553-579. gs O

Seears, H. A., Darling, K. F. & Wade, C. M. (2012). Ecological partitioning and diversity in tropical planktonic foraminifera. BMC Evolutionary Biology. 12(54): 1-15. gs

Shackleton, N. J. & Vincent, E. (1978). Oxygen and carbon isotope studies in Recent Foraminifera from the southeast Indian Ocean. Marine Micropaleontology. 3: 1-13. gs

Siccha, M. & Kucera, M. (2017). ForCenS, a curated database of planktonic foraminifera census counts in marine surface sediment samples. Scientific Data. 4(1): 1-12. gs

Soldan, D. M., Petrizzo, M. R. & Silva, I. P. (2014). Pearsonites, a new Paleogene planktonic foraminiferal genus for the broedermanni lineage. Journal of Foraminiferal Research. 44: 17-27. gs

Srinivasan, M. S. & Kennett, J. P. (1976). Evolution and phenotypic variation in the Late Cenozoic Neogloboquadrina dutertrei plexus. In, Takayanagi, Y. & Saito, T. (eds) Progress in Micropaleontology. American Museum of Natural History Micropaleontology Press, New York 329-355. gs

Ujiié, Y. & Lipps, J. H. (2009). Cryptic diversity in planktonic foraminifera in the northwest Pacific ocean. Journal of Foraminiferal Research. 39: 145-154. gs

Zobel, B. (1968). Phanotypische Varianten von Globigerina dutertrei Orbigny (Foram.) ihre Bedeutung fur die Stratigraphie in quartaren Tiefsee-Sedimenten. Geologisch Jarhbuch. 85: 97-122. gs


logo

Neogloboquadrina dutertrei compiled by the pforams@mikrotax project team viewed: 4-10-2024

Taxon Search:
Advanced Search

Short stable page link: https://mikrotax.org/pforams/index.php?id=104175 Go to Archive.is to create a permanent copy of this page - citation notes



Add Comment

* Required information
Captcha Image
Powered by Commentics

Comments

No comments yet. Be the first!