pforams@mikrotax - Subbotina linaperta pforams@mikrotax - Subbotina linaperta

Subbotina linaperta


Classification: pf_cenozoic -> Globigerinidae -> Subbotina -> Subbotina linaperta
Sister taxa: S. projecta, S. tecta, S. jacksonensis, S. corpulenta, S. eocaena, S. gortanii, S. crociapertura, S. yeguaensis, S. senni, S. roesnaesensis ⟩⟨ S. utilisindex, S. angiporoides, S. minima, S. linaperta, S. patagonica ⟩⟨ S. cancellata, S. hornibrooki, S. velascoensis, S. triloculinoides, S. triangularis, S. trivialis, S. sp.

Taxonomy

Citation: Subbotina linaperta (Finlay 1939)
Taxonomic rank: species
Basionym: Globigerina linaperta
Synonyms:
Taxonomic discussion: The morphologic variability of forms included in this taxon is exemplified by comparison of a paratype and topotype specimen (Pl.6.14, Figs. 1-4), which show varying degrees of equatorial flattening of the final whorl chambers and variable rates of chamber size increase in the final whorl. Some authors (e.g., Huber, 1991; Berggren, 1992) distinguish sensu stricto forms in which the final chamber exhibits flattening. Morphologic intergradation with the ancestral and descendent forms has been noted by several authors (e.g., Blow, 1979:1278; Stainforth and others, 1975:202). Jenkins (1971) noted that Subbotina linaperta in New Zealand was limited to the middle to upper Eocene. The species was found only in the middle Eocene by Krasheninnikov and Basov (1983) at DSDP Site 512, Falkland Plateau, South Atlantic Ocean. Stott and Kennett (1990) established that the last occurrence of S. linaperta was at the middle/upper Eocene boundary at Leg 113 drill sites in the Weddell Sea, Antarctic Ocean. Huber (1991) also recorded S. linaperta s.s. only in the middle Eocene at Hole 738A, Kerguelen Plateau, southern Indian Ocean, and Berggren (1992) noted that the species disappeared at the middle/upper Eocene boundary at ODP Holes 748B and 749B on the southern Kerguelen Plateau. Thus, it appears, as Krasheninnikov and Basov surmised that climatic factors prevented S. linaperta from occupying high southern latitude waters in the late Eocene. In the low latitudes of the southern hemisphere Belford (1984) recorded S. linaperta in the lower Eocene (Zone P8/9) in Papua, New Guinea.[Olsson et al. 2006]

The range of S. linaperta in the northern hemisphere is somewhat equivocal. Bronnimann (1952) considered S. linaperta a dominant species of the Paleocene of Trinidad. Although he referred to the peripheral flattening of chambers, the specimen he figured (his pl. 2, figs.7-9) does not show the characteristic morphology of this species and is more openingly coiled than is the case for S. linaperta. This specimen is probably S. triangularis (White), which is very common in the upper Paleocene of Trinidad. Bolli (1957) also identified S. linaperta in the upper Paleocene of Trinidad, but the specimen he illustrated (his pl. 15, figs. 15-17) does not exhibit the flattened chambers typical of S. linaperta. Bolli’s hypotype, here illustrated for the first in SEM (Plate 6.15, Figs. 12, 16), shows morphological characteristics of S. patagonica, which is interpreted as the ancestral species of S. linaperta.[Olsson et al. 2006]

Subbotina linaperta belongs to a group of coarse, symmetrically cancellate, tightly coiled subbotinids that includes S. patagonica (Todd and Kniker) and S. velascoensis (Cushman). Although S. linaperta is morphologically close to S. velascoensis, in that both possess laterally compressed or flattened chambers, the latter species goes extinct in Zone P5 (= E½) below the first occurrence of S. linaperta in Zone P7 (= E5). Subbotina patagonica ranges into the lower Eocene and is probably the ancestor of S. linaperta. Jenkins (1971) figured a topotype specimen of S. linaperta (his pl. 18, fig. 554) with a bulla-like ultimate chamber and Belford (1984) also figured such specimens. This is also a feature that is observed in S. velascoensis (see Olsson and others, 1999, pl. 29, fig. 8). Blow (1979) illustrated a number of specimens to show his view of the range of morphological variation in S. linaperta, but these specimens (his pl. 91, fig. 8; pl. 158, fig. 8; pl. 160, figs. 6-8; pl. 177, fig. 4-6; pl. 240, figs. 5, 6) are more loosely coiled forms and do not have the coarse, symmetrical cancellate wall texture of S. linaperta. The specimen from ‘Zone P7’ illustrated on his pl. 124, fig. 9, although not well preserved, is more tightly coiled and has a symmetrical wall texture, and may represent this species, although this specimen is not as coarsely cancellate as in typical S. linaperta.[Olsson et al. 2006]

In the northern hemisphere S. linaperta has been widely recorded in the middle and upper Eocene. The lowest record of the species is in Zone P7 (Snyder and Waters, 1985) and in the southern hemisphere it has been identified in Zone P8/9 by Belford (1984). It would appear that linkage between S. patagonica and S. linaperta lies in low latitude sections since in mid and high latitude sections S. linaperta does not appear until the middle Eocene. [Olsson et al. 2006]

Catalog entries: Globigerina linaperta, Globigerina posttriloculinoides, Globigerina posttriloculinoides clinata, Subbotina oregonensis

Type images:

Distinguishing features:
Parent taxon (Subbotina): Low trochospiral, tripartite test, with 3-4 rapidly inflating, globular chambers in final whorl. Umbilicus nearly closed by tight coiling. Wall cancellate with spines at nodes of the ridges, +/- spine collars.
This taxon: Test low trochospiral, globular, with 3-3⅓ chambers in final whorl. Final chamber large and compressed. Apeture highly arched, with well-developed lip. Wall texture coarsely cancellate.

NB These concise distinguishing features statements are used in the tables of daughter-taxa to act as quick summaries of the differences between e.g. species of one genus.
They are being edited as the site is developed and comments on them are especially welcome.

Description


Morphology:
Test low trochospiral, globular, rounded in outline, chambers globular; in spiral view 3-3⅓ globular, embracing chambers in ultimate whorl, increasing rapidly in size, sutures slightly to moderately depressed, straight to slightly curved, ultimate chamber broader than high, presenting a flattened appearance; in umbilical view 3-3⅓ globular, embracing chambers, increasing rapidly in size, sutures moderately depressed, straight to slightly curved, umbilicus very small, enclosed by surrounding chambers, aperture umbilical to somewhat extraumbilical, bordered by a thin, even lip, ultimate chamber broader than high, presenting a flattened appearance; in edge view chambers globular in shape, embracing; aperture visible as a low arch, bordered by a thin, even lip, ultimate chamber broader than high, presenting a flattened appearance. [Olsson et al. 2006]

Wall type:
Coarsely and symmetrically cancellate, normal perforate, spinose, sacculifer-type wall texture. [Olsson et al. 2006]

Size:
Maximum diameter of neotype 0.38 mm, thickness 0.27 mm. [Olsson et al. 2006]

Character matrix
test outline:Circularchamber arrangement:Trochospiraledge view:Equally biconvexaperture:Umbilical
sp chamber shape:Globularcoiling axis:Lowperiphery:N/Aaperture border:Thin lip
umb chbr shape:Globularumbilicus:Narrowperiph margin shape:Broadly roundedaccessory apertures:None
spiral sutures:Moderately depressedumb depth:Deepwall texture:Spinoseshell porosity:Finely Perforate: 1-2.5µm
umbilical or test sutures:Moderately depressedfinal-whorl chambers:3-3.5 N.B. These characters are used for advanced search. N/A - not applicable

Biogeography and Palaeobiology


Geographic distribution

Cosmopolitan. Particularly common during the middle Eocene at southern, high latitudes. [Olsson et al. 2006]
Aze et al. 2011 summary: Cosmopolitan; based on Olsson et al. (2006a)

Isotope paleobiology
Poore & Matthews (1984) and Pearson and others (1993) recorded stable isotope signatures that indicate that the adult S. linaperta lived near the thermocline. [Olsson et al. 2006]
Aze et al. 2011 ecogroup 3 - Open ocean thermocline. Based on light _13C and relatively heavy _18O. Sources cited by Aze et al. 2011 (appendix S3): Poore & Matthews (1984) Pearson et al. (1993); Coxall et al. (2000)

Phylogenetic relations
Subbotina linaperta belongs to a group of tightly coiled subbotinids with a coarse, symmetrical cancellate wall texture. Species in this group include S. velascoensis, S. patagonica, S. angiporoides (Hornibrook), and S. utilisindex (Jenkins and Orr). It appears that S. linaperta is derived from S. patagonica by flattening of chambers and rotation of the aperture to a more extraumbilical position. [Olsson et al. 2006]

Most likely ancestor: Subbotina patagonica - at confidence level 3 (out of 5). Data source: Olsson et al. 2006 f6.2.
Likely descendants: Subbotina minima; Subbotina utilisindex; plot with descendants

Biostratigraphic distribution

Geological Range:
Notes: Zone E5 to Zone E16. [Olsson et al. 2006]
Last occurrence (top): within E16 zone (33.90-34.68Ma, top in Priabonian stage). Data source: Eocene Atlas
First occurrence (base): within E5 zone (50.67-52.54Ma, base in Ypresian stage). Data source: Eocene Atlas

Plot of occurrence data:

Primary source for this page: Wade et al. 2018 - Olig Atlas chap.10 p.321; Olsson et al. 2006 - Eocene Atlas, chap. 6, p. 149

References:

Belford, D. J. (1984). Tertiary foraminifera and age of sediments, Ok Tedi-Wabag, Papua New Guinea. Australia Bureau of Mineral Resources Geology and Geophysics, Bulletin. 216: 1-52. gs

Berggren, W. A. (1992). Paleogene planktonic foraminifer magnetobiostratigraphy of the southern Kerguelen Plateau (sites 747-749). Proceedings of the Ocean Drilling Program, Scientific Results. 120: 551-568. gs

Blow, W. H. (1979). The Cainozoic Globigerinida: A study of the morphology, taxonomy, evolutionary relationships and stratigraphical distribution of some Globigerinida (mainly Globigerinacea). E. J. Brill, Leiden. 2: 1-1413. gs

Bolli, H. M. (1957a). Planktonic foraminifera from the Eocene Navet and San Fernando formations of Trinidad. In, Loeblich, A. R. , Jr., Tappan, H., Beckmann, J. P., Bolli, H. M., Montanaro Gallitelli, E. & Troelsen, J. C. (eds) Studies in Foraminifera. U.S. National Museum Bulletin . 215: 155-172. gs

Brönnimann, P. (1952d). Trinidad Paleocene and lower Eocene Globigerinidae. Bulletins of American Paleontology. 34(143): 1-34. gs

Finlay, H. J. (1939b). New Zealand foraminifera: Key species in stratigraphy - no. 2. Transactions of the Royal Society of New Zealand. 69(1): 89-128. gs

Finlay, H. J. (1939c). New Zealand foraminifera: Key species in stratigraphy - no. 3. Transactions of the Royal Society of New Zealand. 69(3): 309-329. gs

Gohrbandt, K. H. A. (1962). Die Kleinforaminiferenfauna des obereozänen Anteils der Reingruber Serie bei Bruderndorf (Bezirk Korneuburg, Niederösterreich). Mitteilungen der Geologischen Gesellschaft in Wien. 56: 55-145. gs

Hillebrandt, A. , von (1976). Los foraminiferos planctonicos, nummulitidos y coccolitoforidos de la zona de Globorotalia palmerae del Cuisiense (Eoceno inferior) en el SE de Espana, (Provincias de Murcia y Alicante. Revista Española de Micropaleontología. 8(3): 323-394. gs O

Hornibrook, N. d. B. (1958). New Zealand Upper Cretaceous and Tertiary foraminiferal zones and some overseas correlations. Micropaleontology. 4: 25-38. gs

Huber, B. T. (1991c). Paleogene and Early Neogene Planktonic Foraminifer Biostratigraphy of Sites 738 and 744, Kerguelen Plateau (Southern Indian Ocean). Proceedings of the Ocean Drilling Program, Scientific Results. 119: 427-449. gs

Jenkins, D. G. (1971). New Zealand Cenozoic Planktonic Foraminifera. New Zealand Geological Survey, Paleontological Bulletin. 42: 1-278. gs

Khalilov, D. M. (1956). 0 pelagicheskoy faune foraminifer Paleogenovykh otlozheniy Azerbaydzhana [Pelagic Foraminifera of the Paleogene Deposits of the Azerbaizhan SSR]. Trudy Instituta Geologii, Akademiya Nauk Azerbaidzhanskoi SSR. 17: 234-255. gs

Krasheninnikov, V. A. & Basov, I. A. (1983). Stratigraphy of Cretaceous sediments of the Falkland Plateau based on planktonic foraminifers, Deep Sea Drilling Project, Leg 71. Initial Reports of the Deep Sea Drilling Project. 71: 789-820. gs

McKeel, D. R. & Lipps, J. J. (1975). Eocene and Oligocene planktonic foraminifera from the Central and Southern Oregon Coast Range. Journal of Foraminiferal Research. 5(4): 249-269. gs

McTavish, R. A. (1966). Planktonic foraminifera from the Malaita Group, British Solomon Islands. Micropaleontology. 12(1): 1-36. gs

Nocchi, M., Amici, E. & Premoli Silva, I. (1991). Planktonic foraminiferal biostratigraphy and paleoenvironmental interpretation of Paleogene faunas from the subantarctic transect, Leg 114. Proceedings of the Ocean Drilling Program, Scientific Results. 114: 233-273. gs

Olsson, R. K., Hemleben, C., Berggren, W. A. & Huber, B. T. (1999). Atlas of Paleocene Planktonic Foraminifera. Smithsonian Institution Press, Washington, DC. (85): 1-252. gs

Olsson, R. K., Hemleben, C., Huber, B. T. & Berggren, W. A. (2006a). Taxonomy, biostratigraphy, and phylogeny of Eocene Globigerina, Globoturborotalita, Subbotina, and Turborotalita. In, Pearson, P. N., Olsson, R. K., Hemleben, C., Huber, B. T. & Berggren, W. A. (eds) Atlas of Eocene Planktonic Foraminifera. Cushman Foundation for Foraminiferal Research, Special Publication . 41(Chap 6): 111-168. gs O

Poore, R. Z. & Brabb, E. E. (1977). Eocene and Oligocene planktonic foraminifera from the Upper Butano sandstone and type San Lorenzo formation, Santa Cruz Mountains, California. Journal of Foraminiferal Research. 7(4): 249-272. gs

Poore, R. Z. & Matthews, R. K. (1984). Oxygen isotope ranking of late Eocene and Oligocene planktonic foraminifers: implications for Oligocene sea-surface temperatures and global ice-volume. Marine Micropaleontology. 9: 111-134. gs

Postuma, J. A. (1962). Manual of planktonic foraminifera. Bataafse Internationale Petroleum Maatschappij N.V The Hague. -. gs

Saito, T. (1962a). Eocene planktonic foraminifera from Hahajima (Hillsborough Island). Transactions and Proceedings of the Palaeontological Society of Japan. 45: 209-225. gs

Snyder, S. W. & Waters, V. J. (1985). Cenozoic planktonic foraminiferal biostratigraphy of the Goban Spur Region, Deep Sea Drilling Project Leg 80. Initial Reports of the Deep Sea Drilling Project. 80: 439-472. gs

Stainforth, R. M., Lamb, J. L., Luterbacher, H., Beard, J. H. & Jeffords, R. M. (1975). Cenozoic planktonic foraminiferal zonation and characteristics of index forms. University of Kansas Paleontological Contributions, Articles. 62: 1-425. gs O

Stott, L. D. & Kennett, J. P. (1990). The Paleoceanographic and Paleoclimatic signature of the Cretaceous/Paleogene boundary in the Antarctic: Stable isotopic results from ODP Leg 113. Proceedings of the Ocean Drilling Program, Scientific Results. 113: 829-848. gs

Toumarkine, M. (1975). Middle and Late Eocene planktonic foraminifera from the northwestern Pacific Ocean: Leg 32 of the Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project. 32: 735-751. gs

Wade, B. S., Olsson, R. K., Pearson, P. N., Edgar, K. M. & Premoli Silva, I. (2018b). Taxonomy, biostratigraphy, and phylogeny of Oligocene Subbotina. In, Wade, B. S., Olsson, R. K., Pearson, P. N., Huber, B. T. & Berggren, W. A. (eds) Atlas of Oligocene Planktonic Foraminifera. Cushman Foundation for Foraminiferal Research, Special Publication . 46(Chap 10): 307-330. gs

Wade, B. S., Aljahdali, M. H., Mufrreh, Y. A., Memesh, A. M., AlSoubhi, S. A. & Zalmout, I. S. (2021). Upper Eocene planktonic foraminifera from northern Saudi Arabia: implications for stratigraphic ranges. Journal of Micropalaeontology. 40: 145-161. gs O


logo

Subbotina linaperta compiled by the pforams@mikrotax project team viewed: 13-2-2025

Taxon Search:
Advanced Search

Short stable page link: https://mikrotax.org/pforams/index.php?id=100288 Go to Archive.is to create a permanent copy of this page - citation notes



Add Comment

* Required information
Captcha Image

Comments

No comments yet. Be the first!