The range of S. linaperta in the northern hemisphere is somewhat equivocal. Bronnimann (1952) considered S. linaperta a dominant species of the Paleocene of Trinidad. Although he referred to the peripheral flattening of chambers, the specimen he figured (his pl. 2, figs.7-9) does not show the characteristic morphology of this species and is more openingly coiled than is the case for S. linaperta. This specimen is probably S. triangularis (White), which is very common in the upper Paleocene of Trinidad. Bolli (1957) also identified S. linaperta in the upper Paleocene of Trinidad, but the specimen he illustrated (his pl. 15, figs. 15-17) does not exhibit the flattened chambers typical of S. linaperta. Bolli’s hypotype, here illustrated for the first in SEM (Plate 6.15, Figs. 12, 16), shows morphological characteristics of S. patagonica, which is interpreted as the ancestral species of S. linaperta.[Olsson et al. 2006]
Subbotina linaperta belongs to a group of coarse, symmetrically cancellate, tightly coiled subbotinids that includes S. patagonica (Todd and Kniker) and S. velascoensis (Cushman). Although S. linaperta is morphologically close to S. velascoensis, in that both possess laterally compressed or flattened chambers, the latter species goes extinct in Zone P5 (= E½) below the first occurrence of S. linaperta in Zone P7 (= E5). Subbotina patagonica ranges into the lower Eocene and is probably the ancestor of S. linaperta. Jenkins (1971) figured a topotype specimen of S. linaperta (his pl. 18, fig. 554) with a bulla-like ultimate chamber and Belford (1984) also figured such specimens. This is also a feature that is observed in S. velascoensis (see Olsson and others, 1999, pl. 29, fig. 8). Blow (1979) illustrated a number of specimens to show his view of the range of morphological variation in S. linaperta, but these specimens (his pl. 91, fig. 8; pl. 158, fig. 8; pl. 160, figs. 6-8; pl. 177, fig. 4-6; pl. 240, figs. 5, 6) are more loosely coiled forms and do not have the coarse, symmetrical cancellate wall texture of S. linaperta. The specimen from ‘Zone P7’ illustrated on his pl. 124, fig. 9, although not well preserved, is more tightly coiled and has a symmetrical wall texture, and may represent this species, although this specimen is not as coarsely cancellate as in typical S. linaperta.[Olsson et al. 2006]
In the northern hemisphere S. linaperta has been widely recorded in the middle and upper Eocene. The lowest record of the species is in Zone P7 (Snyder and Waters, 1985) and in the southern hemisphere it has been identified in Zone P8/9 by Belford (1984). It would appear that linkage between S. patagonica and S. linaperta lies in low latitude sections since in mid and high latitude sections S. linaperta does not appear until the middle Eocene. [Olsson et al. 2006]
Catalog entries: Globigerina linaperta, Globigerina posttriloculinoides, Globigerina posttriloculinoides clinata, Subbotina oregonensis
Type images:Distinguishing features:
Parent taxon (Subbotina): Low trochospiral, tripartite test, with 3-4 rapidly inflating, globular chambers in final whorl.
Umbilicus nearly closed by tight coiling.
Wall cancellate with spines at nodes of the ridges, +/- spine collars.
This taxon: Test low trochospiral, globular, with 3-3⅓ chambers in final whorl. Final chamber large and compressed. Apeture highly arched, with well-developed lip. Wall texture coarsely cancellate.
Morphology:
Wall type:
Size:
Character matrix
test outline: | Circular | chamber arrangement: | Trochospiral | edge view: | Equally biconvex | aperture: | Umbilical |
sp chamber shape: | Globular | coiling axis: | Low | periphery: | N/A | aperture border: | Thin lip |
umb chbr shape: | Globular | umbilicus: | Narrow | periph margin shape: | Broadly rounded | accessory apertures: | None |
spiral sutures: | Moderately depressed | umb depth: | Deep | wall texture: | Spinose | shell porosity: | Finely Perforate: 1-2.5µm |
umbilical or test sutures: | Moderately depressed | final-whorl chambers: | 3-3.5 | N.B. These characters are used for advanced search. N/A - not applicable |
Geographic distribution
Aze et al. 2011 summary: Cosmopolitan; based on Olsson et al. (2006a)
Isotope paleobiology
Aze et al. 2011 ecogroup 3 - Open ocean thermocline. Based on light _13C and relatively heavy _18O. Sources cited by Aze et al. 2011 (appendix S3): Poore & Matthews (1984) Pearson et al. (1993); Coxall et al. (2000)
Phylogenetic relations
Most likely ancestor: Subbotina patagonica - at confidence level 3 (out of 5). Data source: Olsson et al. 2006 f6.2.
Likely descendants: Subbotina minima; Subbotina utilisindex;
plot with descendants
Geological Range:
Notes: Zone E5 to Zone E16. [Olsson et al. 2006]
Last occurrence (top): within E16 zone (33.90-34.68Ma, top in Priabonian stage). Data source: Eocene Atlas
First occurrence (base): within E5 zone (50.67-52.54Ma, base in Ypresian stage). Data source: Eocene Atlas
Plot of occurrence data:
Primary source for this page: Wade et al. 2018 - Olig Atlas chap.10 p.321; Olsson et al. 2006 - Eocene Atlas, chap. 6, p. 149
Belford, D. J. (1984). Tertiary foraminifera and age of sediments, Ok Tedi-Wabag, Papua New Guinea. Australia Bureau of Mineral Resources Geology and Geophysics, Bulletin. 216: 1-52. gs Berggren, W. A. (1992). Paleogene planktonic foraminifer magnetobiostratigraphy of the southern Kerguelen Plateau (sites 747-749). Proceedings of the Ocean Drilling Program, Scientific Results. 120: 551-568. gs Blow, W. H. (1979). The Cainozoic Globigerinida: A study of the morphology, taxonomy, evolutionary relationships and stratigraphical distribution of some Globigerinida (mainly Globigerinacea). E. J. Brill, Leiden. 2: 1-1413. gs Bolli, H. M. (1957a). Planktonic foraminifera from the Eocene Navet and San Fernando formations of Trinidad. In, Loeblich, A. R. , Jr., Tappan, H., Beckmann, J. P., Bolli, H. M., Montanaro Gallitelli, E. & Troelsen, J. C. (eds) Studies in Foraminifera. U.S. National Museum Bulletin . 215: 155-172. gs Brönnimann, P. (1952d). Trinidad Paleocene and lower Eocene Globigerinidae. Bulletins of American Paleontology. 34(143): 1-34. gs Finlay, H. J. (1939b). New Zealand foraminifera: Key species in stratigraphy - no. 2. Transactions of the Royal Society of New Zealand. 69(1): 89-128. gs Finlay, H. J. (1939c). New Zealand foraminifera: Key species in stratigraphy - no. 3. Transactions of the Royal Society of New Zealand. 69(3): 309-329. gs Gohrbandt, K. H. A. (1962). Die Kleinforaminiferenfauna des obereozänen Anteils der Reingruber Serie bei Bruderndorf (Bezirk Korneuburg, Niederösterreich). Mitteilungen der Geologischen Gesellschaft in Wien. 56: 55-145. gs Hillebrandt, A. , von (1976). Los foraminiferos planctonicos, nummulitidos y coccolitoforidos de la zona de Globorotalia palmerae del Cuisiense (Eoceno inferior) en el SE de Espana, (Provincias de Murcia y Alicante. Revista Española de Micropaleontología. 8(3): 323-394. gs O Hornibrook, N. d. B. (1958). New Zealand Upper Cretaceous and Tertiary foraminiferal zones and some overseas correlations. Micropaleontology. 4: 25-38. gs Huber, B. T. (1991c). Paleogene and Early Neogene Planktonic Foraminifer Biostratigraphy of Sites 738 and 744, Kerguelen Plateau (Southern Indian Ocean). Proceedings of the Ocean Drilling Program, Scientific Results. 119: 427-449. gs Jenkins, D. G. (1971). New Zealand Cenozoic Planktonic Foraminifera. New Zealand Geological Survey, Paleontological Bulletin. 42: 1-278. gs Khalilov, D. M. (1956). 0 pelagicheskoy faune foraminifer Paleogenovykh otlozheniy Azerbaydzhana [Pelagic Foraminifera of the Paleogene Deposits of the Azerbaizhan SSR]. Trudy Instituta Geologii, Akademiya Nauk Azerbaidzhanskoi SSR. 17: 234-255. gs Krasheninnikov, V. A. & Basov, I. A. (1983). Stratigraphy of Cretaceous sediments of the Falkland Plateau based on planktonic foraminifers, Deep Sea Drilling Project, Leg 71. Initial Reports of the Deep Sea Drilling Project. 71: 789-820. gs McKeel, D. R. & Lipps, J. J. (1975). Eocene and Oligocene planktonic foraminifera from the Central and Southern Oregon Coast Range. Journal of Foraminiferal Research. 5(4): 249-269. gs McTavish, R. A. (1966). Planktonic foraminifera from the Malaita Group, British Solomon Islands. Micropaleontology. 12(1): 1-36. gs Nocchi, M., Amici, E. & Premoli Silva, I. (1991). Planktonic foraminiferal biostratigraphy and paleoenvironmental interpretation of Paleogene faunas from the subantarctic transect, Leg 114. Proceedings of the Ocean Drilling Program, Scientific Results. 114: 233-273. gs Olsson, R. K., Hemleben, C., Berggren, W. A. & Huber, B. T. (1999). Atlas of Paleocene Planktonic Foraminifera. Smithsonian Institution Press, Washington, DC. (85): 1-252. gs Olsson, R. K., Hemleben, C., Huber, B. T. & Berggren, W. A. (2006a). Taxonomy, biostratigraphy, and phylogeny of Eocene Globigerina, Globoturborotalita, Subbotina, and Turborotalita. In, Pearson, P. N., Olsson, R. K., Hemleben, C., Huber, B. T. & Berggren, W. A. (eds) Atlas of Eocene Planktonic Foraminifera. Cushman Foundation for Foraminiferal Research, Special Publication . 41(Chap 6): 111-168. gs O Poore, R. Z. & Brabb, E. E. (1977). Eocene and Oligocene planktonic foraminifera from the Upper Butano sandstone and type San Lorenzo formation, Santa Cruz Mountains, California. Journal of Foraminiferal Research. 7(4): 249-272. gs Poore, R. Z. & Matthews, R. K. (1984). Oxygen isotope ranking of late Eocene and Oligocene planktonic foraminifers: implications for Oligocene sea-surface temperatures and global ice-volume. Marine Micropaleontology. 9: 111-134. gs Postuma, J. A. (1962). Manual of planktonic foraminifera. Bataafse Internationale Petroleum Maatschappij N.V The Hague. -. gs Saito, T. (1962a). Eocene planktonic foraminifera from Hahajima (Hillsborough Island). Transactions and Proceedings of the Palaeontological Society of Japan. 45: 209-225. gs Snyder, S. W. & Waters, V. J. (1985). Cenozoic planktonic foraminiferal biostratigraphy of the Goban Spur Region, Deep Sea Drilling Project Leg 80. Initial Reports of the Deep Sea Drilling Project. 80: 439-472. gs Stainforth, R. M., Lamb, J. L., Luterbacher, H., Beard, J. H. & Jeffords, R. M. (1975). Cenozoic planktonic foraminiferal zonation and characteristics of index forms. University of Kansas Paleontological Contributions, Articles. 62: 1-425. gs O Stott, L. D. & Kennett, J. P. (1990). The Paleoceanographic and Paleoclimatic signature of the Cretaceous/Paleogene boundary in the Antarctic: Stable isotopic results from ODP Leg 113. Proceedings of the Ocean Drilling Program, Scientific Results. 113: 829-848. gs Toumarkine, M. (1975). Middle and Late Eocene planktonic foraminifera from the northwestern Pacific Ocean: Leg 32 of the Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project. 32: 735-751. gs Wade, B. S., Olsson, R. K., Pearson, P. N., Edgar, K. M. & Premoli Silva, I. (2018b). Taxonomy, biostratigraphy, and phylogeny of Oligocene Subbotina. In, Wade, B. S., Olsson, R. K., Pearson, P. N., Huber, B. T. & Berggren, W. A. (eds) Atlas of Oligocene Planktonic Foraminifera. Cushman Foundation for Foraminiferal Research, Special Publication . 46(Chap 10): 307-330. gs Wade, B. S., Aljahdali, M. H., Mufrreh, Y. A., Memesh, A. M., AlSoubhi, S. A. & Zalmout, I. S. (2021). Upper Eocene planktonic foraminifera from northern Saudi Arabia: implications for stratigraphic ranges. Journal of Micropalaeontology. 40: 145-161. gs OReferences:
![]() |
Subbotina linaperta compiled by the pforams@mikrotax project team viewed: 13-2-2025
Short stable page link: https://mikrotax.org/pforams/index.php?id=100288 Go to Archive.is to create a permanent copy of this page - citation notes |