Nannotax3 - References

This page provides a rather comprehensive bibliography of the taxonomic literature on coccolithophores and calcareous nannofossils, with less complete coverage of non-taxonomic literature on coccolithophores. It is based on the bibliographies of Bown (1998) Calcareous Nannofossil Biostratigraphy and Young et al. 2003 Guide to Extant Coccolithophore Taxonomy supplemented by inclusion of references to more recent literature. It currently (April 2024) includes ca 5000 references. Where we have open access PDF copies we have included links to view or open them.

Output mode: Search field:Search string: Topic:Order by:Authors:Show all:
45255 references have been found, they are presented over 18 pages: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Duan, W. (1985). Calcareous nannofossils from two deep-sea cores in the northern South China Sea. Acta Micropalaeontologica Sinica. 2: 92-102. gs :: :: ::

Duchamp-Alphonse, S., Gardin, S., Fiet, N., Bartolini, A., Blamart, D. & Pagel, M. (2007). Fertilization of the northwestern Tethys (Vocontian basin, SE France) during the Valanginian carbon isotope perturbation: Evidence from calcareous nannofossils and trace element data. Palaeogeography Palaeoclimatology Palaeoecology. 243: 132-151. gs :: :: :: doi:10.1016/j.palaeo.2006.07.010

Duchamp-Alphonse, S., Siani, G., Michel, E., Beaufort, L., Gally, Y. & Jaccard, S. L. (2018). Enhanced ocean-atmosphere carbon partitioning via the carbonate counter pump during the last deglacial. Nature Communications. 9(1): 2396-. gs :: :: :: doi:10.1038/s41467-018-04625-7

Dudley, W. C., Blackwelder, P., Brand, L. & Duplessy, Jean-C. (1986). Stable Isotopic Composition of Coccoliths. Marine Micropaleontology. 10: 1-8 . gs :: :: :: doi:10.1016/0377-8398(86)90021-6

Dudley, W. C., Duplessy, J. C., Blackwelder, P. L., Brand, L. E. & Guillard, R. R. L. (1980). Coccoliths in Pleistocene-Holocene nannofossil assemblages. Nature. 285: 222-223. gs :: :: :: doi:10.1038/285222a0

Dudley, W. C. & Goodney, D. E. (1979). Oxygen isotope content of coccoliths grown in culture. Deep-Sea Research Part I: Oceanographic Research Papers. 26(5): 495-503. gs :: :: :: doi:10.1016/0198-0149(79)90092-X

Dudley, W. C. & Nelson, C. S. (1989). Quaternary Surface-Water Stable Isotope Signal from Calcareous Nannofossils at DSDP Site 593, Southern Tasman Sea. Marine Micropaleontology. 13: 353-373 . gs :: :: :: doi:10.1016/0377-8398(89)90025-X

Dudley, W. C. & Nelson, C. S. (1994). The influence of non-equilibrium isotope fractionation on the Quaternary calcareous nannofossil stable isotope signal in the southwest Pacific Ocean, DSDP Site 594. Marine Micropaleontology. 24: 3-27. gs :: :: :: doi:10.1016/0377-8398(94)90008-6

Dufour, T. (1968). Quelques remarques sur les organismes incertae sedis de la famille des Calcisphaerulidae Bonet (1956). Comptes rendus hebdomaire de l'Académie des sciences, Paris. 266: 1947-1949. gs :: :: ::

Dumitrica, P. (1973). Cenozoic endoskeletal dinoflagellates in southwestern Pacific sediments cored during Leg 21 of the DSDP. Initial Reports of the Deep Sea Drilling Project. 21: 819-835. gs :: :: O :: doi:10.2973/dsdp.proc.21.125.1973

Dumont, A. (1849). Rapport sur la carte géologique de la Belgique. Bulletin de l'Academia Royale des Sciences des Lettres et des Beaux Artes de Bruxelles. 16: 351-373. gs :: :: ::

Dumoulin, J. A. & Bown, P. R. (1992). Depositional History, Nannofossil Biostratigraphy, and Correlation of Argo Abyssal Plain Sites 765 and 261. Proceedings of the Ocean Drilling Program, Scientific Results. 123: 3-56. gs :: :: O :: doi:10.2973/odp.proc.sr.123.156.1992

Dunkley Jones, T. & Bown, P. R. (2007). Post-sampling dissolution and the consistency of nannofossil diversity measures: A case study from freshly cored sediments of coastal Tanzania. Marine Micropaleontology. 62: 254-268. gs :: :: :: doi:10.1016/j.marmicro.2006.09.001

Dunkley Jones, T., Bown, P. R. & Pearson, P. (2009). Exceptionally well preserved upper Eocene to lower Oligocene calcareous nannofossils (Prymnesiophycidae) from the Pande Formation (Kilwa Group), Tanzania. Journal of Systematic Palaeontology. 7(4): 359-411. gs :: :: :: doi:10.1017/S1477201909990010

Dunkley Jones, T., Bown, P. R., Pearson, P. N., Wade, B. S., Coxall, H. K. & Lear, C. H. (2008). Major shifts in calcareous phytoplankton assemblages through the Eocene-Oligocene transition of Tanzania and their implications for low-latitude primary production. Paleoceanography. 23(4): -. gs :: :: :: doi:10.1029/2008PA001640

Dunkley Jones, T., Magrill, P., Hefetz, M. W., Cotton, L. & Pearson, P. N. (2017). The contribution of micropalaeontology to the study of Bronze Age potters’ workshops at Tel Lachish, Israel and the biostratigraphy of the Lachish area. In, William, M. & et al, (eds) The archaeological and forensic applications of microfossils: A deeper understanding of human history. The Micropalaeontological Society Special Publications . 177-198. gs :: :: ::

Dupont, C. L. & Ahner, B. A. (2005). Effects of copper, cadmium, and zinc on the production and exudation of thiols by Emiliania huxleyi. Limnology and Oceanography. 50(2): 508-515. gs :: :: :: doi:10.4319/lo.2005.50.2.0508

Duque-Herrera, Andrés-F., Helenes, J., Pardo-Trujillo, A., Flores-Villarejo, J-A. & Sierro-Sánchez, F-J. (2018). Miocene biostratigraphy and paleoecology from dinoflagellates, benthic foraminifera and calcareous nannofossils on the Colombian Pacific coast,. Marine Micropaleontology. 141: 42-54. gs :: :: :: doi:10.1016/j.marmicro.2018.05.002

Durak, G. M. (2013). Cellular and molecular mechanisms of biomineralisation in a silicifying haptophyte Prymnesium neolepis. PhD thesis, University of Plymouth. 1-227. gs :: :: ::

Durak, G. M., Brownlee, C. & Wheeler, G. L. (2017). The role of the cytoskeleton in biomineralisation in haptophyte algae. Scientific Reports. 7(15409): 1-12. gs :: :: :: doi:10.1038/s41598-17-15562-8

Durak, G. M. et al. (2016). A role for diatom-like silicon transporters in calcifying coccolithophores. Nature Communications. 7: -. gs :: :: :: doi:10.1038/ncomms10543

Durand Delga, M. (1957). Quleques remarques sur les Fibrosphères. Publications du Service de la Carte Géologique de l'Algérie Bulletin. 13: 153-164. gs :: :: ::

Dyhrman, S. T. & Palenik, B. (2003). Characterization of ectoenzyme activity and phosphate-regulated proteins in the coccolithophorid Emiliania huxleyi. Journal of Plankton Research. 25(10): 1215-1225. gs :: :: :: doi:10.1093/plankt/fbg086

Ebli, O. (1989). Foraminiferen und Coccolithen aus den Lias- Epsilon-Schiefern der Unkener Mulde (Tirolikum, Nördliche Kalkalpen). Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Historische Geologie. 29: 61-83. gs :: :: ::

Echols, D. J. (1985). “Bolboforma”: A Miocene Algae of Possible Biostratigraphic and Paleoclimatic Value. Initial Reports of the Deep Sea Drilling Project. 82: 605-610. gs :: :: :: doi:10.2973/dsdp.proc.82.136.1985

Edvardsen, B., Egge, E. S. & Vaulot, D. (2016). Diversity and distribution of haptophytes revealed by environmental sequencing and metabarcoding – a review. Perspectives in Phycology. 3(2): 77-91. gs :: :: :: doi:10.1127/pip/2016/0052

Edvardsen, B., Eikrem, W., Green, J. C., Andersen, R. A., Moon-Van Der Staay, S. Y. & Medlin, L. K. (2000). Phylogenetic reconstructions of the Haptophyta inferred from 18S ribosomal DNA sequences and available morphological data. Phycologia. 39: 19-35. gs :: :: :: doi:10.2216/i0031-8884-39-1-19.1

Edvardsen, B., Eikrem, W., Throndsen, J., Sáez, A. G., Probert, I. & Medlin, L. K. (2011). Ribosomal DNA phylogenies and a morphological revision provide the basis for a revised taxonomy of the Prymnesiales (Haptophyta). European Journal of Phycology. 46(3): 202-228. gs :: :: :: doi:10.1080/09670262.2011.594095

Edvardsen, B. & Medlin, L. (1998). Genetic analyses of authentic and alternate forms of Chrysochromulina polylepis (Haptophyta). Phycologia. 37(4): 275-283. gs :: :: :: doi:10.2216/i0031-8884-37-4-275.1

Edvardsen, B. & Medlin, L. K. (2007). Molecular systematics of Haptophyta. In, Brodie, J. & Lewis, J. (eds) Unravelling the algae the past, present, and future of algal systematics. Systematics Association Special Volume . 75: 183-196. gs :: :: ::

Edvardsen, B. & Paasche, E. (1992). Two Motile Stages Of Chrysochromulina polylepis (Prymnesiophyceae): Morphology, Growth, and Toxicity. Journal of Phycology. 28: 104-114. gs :: :: :: doi:10.1111/j.0022-3646.1992.00104.x

Edvardsen, B. & Paasche, E. (1998). Bloom dynamics and physiology of Prymnesium and Chrysochromulina. In, Anderson, D. M., Cembella, A. D. & Hallegraeff, G. M. (eds) Physiological Ecology of Harmful Algal Blooms. Nato ASI (Advanced Study Institute) Series . G41: 193-. gs :: :: ::

Edvardsen, B. & Vaulot, D. (1996). Ploidy analysis of the two motile forms of Chrysocromulina polylepis (Prymnesiophyceae). Journal of Phycology. 32: 94-102. gs :: :: :: doi:10.1111/j.0022-3646.1996.00094.x

Edwards, A. R. (1963). A preparation technique for calcareous nannoplankton. Micropaleontology. 9(1): 103-104. gs :: :: :: doi:10.2307/1484615

Edwards, A. R. (1968a). Marine Climates in the Oamaru Distinct during Late Kaiatan to Early Whaingaroan Time. Tuatara. 14(1): 75-79. gs :: :: ::

Edwards, A. R. (1968b). The calcareous nannoplankton evidence for New Zealand Tertiary marine climate. Tuatara. 16(1): 26-31. gs :: :: ::

Edwards, A. R. (1971). A calcareous nannoplankton zonation of the New Zealand Palaeogene. In, Farinacci, A. (ed.) Proceedings of the Second Planktonic Conference Roma 1970. Edizioni Tecnoscienza, Rome 1: 381-419. gs :: :: ::

Edwards, A. R. (1973a). Calcareous Nannofossils from the Southwest Pacific, Deep Sea Drilling Project, Leg 21. Initial Reports of the Deep Sea Drilling Project. 21: 641-691. gs :: :: :: doi:10.2973/dsdp.proc.21.118.1973

Edwards, A. R. (1973b). Key species of New Zealand calcareous nannofossils. New Zealand Journal of Geology and Geophysics. 16: 68-89. gs :: :: :: doi:10.1080/00288306.1973.10425386

Edwards, A. R. & Perch-Nielsen, K. (1975). Calcareous nannofossils from the southern Southwest Pacific, Deep Sea Drilling Project, Leg 29. Initial Reports of the Deep Sea Drilling Project. 29: 469-539. gs :: :: O :: doi:10.2973/dsdp.proc.29.113.1975

Edwards, L. et al. (2000). Supplement to the preliminary stratigraphic database for subsurface sediments of Dorchester county, South Carolina (http://pubs.usgs.gov/openfile/of00-049/ChapB/T_CN_dat.htm). U.S. Geological Survey Open-file Report. (00-049-B): 1-2. gs :: :: ::

Egge, J. K. & Heimdal, B. R. (1994). Blooms of phytoplankton including Emiliania huxleyi (Haptophyta). Effects of nutrient supply in diferent N : P Ratios. Sarsia. 79(4): 333-348. gs :: :: :: doi:10.1080/00364827.1994.10413565

Egger, H., Rögl, F. & Stradner, H. (2007). Kalkiges Nannoplankton und Foraminiferen aus der Chiasmolithus gigas-Subzone (Mitteleozän) von Niederhollabrunn (Waschbergzone, Niederösterreich). Jahrbuch der Geologischen Bundesanstalt. 379-386. gs :: :: ::

Egger, H., Young, J. R., Hay, W. W. & Haq, B. ul (2017). Tributes to Dr Herbert Stradner in recognition of the bestowal of the Eduard Suess Medal by th Austrain Gelogical Society. Berichte der Geologischen Bundesanstalt. 120: XVII-XXVI. gs :: :: ::

Egger,H. (2011). Climate and Biota of the Early Paleogene, Field-Trip Guidebook, 5 – 8 June 2011, Salzburg, Austria. Berichte der Geologischen Bundesanstalt. 86: 1-132. gs :: :: O ::

Ehrenberg, C (1839). Uber die Bildung der Kreidefelsen und des Kreidemergels durch unsichtbare Organismen. Abhandlungen der koniglichen preussischen Akademie der Wissenschaften zu Berlin. 1838: 59-147. gs :: :: ::

Ehrenberg, C. G. (1843). Über die verbreitung des jetzt wirkenden kleinsten organischen lebens in Asien, Australien und Afrika und über die vorherrschende bildung auch des oolithkalkes der Juraformation aus kleinen polythalamischen thieren. Bericht uber die zu Bekanntmachung geeigneten Verhandlungen der Koniglichen Preussische Akademie der Wissenschaften zu Berlin. 100-106. gs :: :: ::

Ehrendorfer, T. & Aubry, M-P. (1992). Calcareous Nannoplankton Changes Across the Cretaceous/Paleocene Boundary in the Southern Indian Ocean (Site 750). Proceedings of the Ocean Drilling Program, Scientific Results. 120: 451-470. gs :: :: :: doi:10.2973/odp.proc.sr.120.148.1992

Ehrendorfer, T. W. (1994). The calcareous nannofossil species Nephrolithus frequens Gorka (1957) and its morphotypes. Journal of Paleontology. 68(2): 191-200. gs :: :: :: doi:10.1017/S0022336000022782

Eide, L. K. (1990). Distribution of Coccoliths in Surface Sediments in the Norwegian-Greenland Sea. Marine Micropaleontology. 16: 65-75. gs :: :: :: doi:10.1016/0377-8398(90)90029-L

Eide, L. K., Beyer, I. K. & Jansen, E. (1996). Comparison of Quaternary interglacial periods in the Iceland Sea. Journal of Quaternary Science. 11(2): 115-124. gs :: :: :: doi:10.1002/(SICI)1099-1417(199603/04)11:2<115::AID-JQS233>3.0.CO;2-S

Eikrem, W. (1996). Chrysochromulina throndsenii sp. nov. (Prymnesiophyceae). Description of a new haptophyte flagellate from Norwegian waters. Phycologia. 35: 377-380. gs :: :: :: doi:10.2216/i0031-8884-35-5-377.1

Eikrem, W. & Edvardsen, B. (1999). Chrysochromulina fragaria sp. nov. (Prymnesiophyceae), a new haptophyte flagellate from Norwegian waters. Phycologia. 38: 149-155. gs :: :: :: doi:10.2216/i0031-8884-38-2-149.1

Eikrem, W. et al. (2016). Haptophyta. In, Archibald, J. M. (ed.) Handbook of the Protists. Springer 1-61. gs :: :: :: doi:10.1007/978-3-319-32669-6_38-1

Eikrem, W. & Moestrup, Ø. (1998). Structural analysis of the flagellar apparatus and the scaly periplast in Chrysochromulina scutellum sp. nov. (Prymnesiophyceae, Haptophyta) from the Skagerrak and the Baltic. Phycologia. 37: 132-153. gs :: :: :: doi:10.2216/i0031-8884-37-2-132.1

Eikrem, W. & Throndsen, J. (1998). Morphology of Chrysochromulina leadbeateri (Prymnesiophyceae) from northern Norway. Phycologia. 37(4): 292-299. gs :: :: :: doi:10.2216/i0031-8884-37-4-292.1

Eikrem, W. & Throndsen, J. (1999). The morphology of Chrysochromulina rotalis sp. nov. (Prymnesiophyceae, Haptophyta), isolated from the Skagerrak. Sarsia. 84: 445-449. gs :: :: :: doi:10.1080/00364827.1999.10807349

Eker-Develi, E. & Kideys, A. E. (2003). Distribution of phytoplankton in the southern Black Sea in summer 1996, spring and autumn 1998. Journal of Marine Systems. 39: 203-211. gs :: :: :: doi:10.1016/S0924-7963(03)00031-9

Eker-Develi, E., Kideys, A. E. & Tugrul, S. (2006). Effect of nutrients on culture dynamics of marine phytoplankton. Aquatic Science. 68: 28-39. gs :: :: :: doi:10.1007/s00027-005-0810-5

el Mamoune, J. & Martinez-Gallego, B. E. (1995). Calcareous nannofossils and planktic foraminifera of the Paleocene-Eocene boundary of southern Spain. In, Flores, J. A. & Sierro, F. J. (eds) Proceedings of the 5th INA Conference, Salamanca 1993. Universidad de Salamanca, Salamanca 143-162. gs :: :: ::

El-Dawoody, (1975). Ultrastructural remarks on some Paleocene coccoliths from Duwi Range, Quesir District, Egypt. Foldt. Kozl.. 105(4): 460-487. gs :: :: ::

El-Dawoody, A. S. (1988). New calcareous nannoplankton species from the Paleocene rocks in souhern Egypt. Bulletin of the Faculty of Science, Cairo University. 56: 549-563. gs :: :: ::

Elbra, T. et al. (2018). Magneto- and biostratigraphy across the Jurassic-Cretaceous boundary in the Kurovice section, Western Carpathians, Czech Republic. Cretaceous Research. 89: 211-223. gs :: :: ::

Elbrachter, M. et al. (2008). Establishing an Agenda for Calcareous Dinoflagellate Research (Thoracosphaeraceae, Dinophyceae) including a nomenclatural synopsis of generic names. Taxon. 57(4): 1289-1303. gs :: :: :: doi:10.1002/tax.574019

Eldrett, J. S., Vieira, M., Gallagher, L., Hampton, M., Blaauw, M. & Swart, P. K. (2021). Late Cretaceous to Palaeogene carbon isotope, calcareous nannofossil and foraminifera stratigraphy of the Chalk Group, Central North Sea. Marine and Petroleum Geology. 124: 1-15. gs :: :: :: doi:10.1016/j.marpetgeo.2020.104789

Eleson, J. W. & Bralower, T. J. (2005). Evidence of changes in surface water temperature and productivity at the Cenomanian/Turonian Boundary. Micropaleontology. 51(4): 319-332. gs :: :: :: doi:10.2113/gsmicropal.51.4.319

Ellegaard, M., Moestrup, O., Andersen, T. J. & Lundholm, N. (2016). Long-term survival of haptophyte and prasinophyte resting stages in marine sediment. European Journal of Phycology. 51(3): 328-337. gs :: :: :: doi:10.1080/09670262.2016.1161243

Eller, G., Tobe, K. & Medlin, L. K. (2007). Hierarchical probes at various taxonomic levels in the Haptophyta and a new division level probe for the Heterokonta. Journal of Plankton Research. 29(7): 629-640. gs :: :: :: doi:10.1093/plankt/fbm045

Ellis, C. H., Lohman, W. H. & Wray, J. L. (1972). Upper Cenozoic calcareous nannofossils from the Gulf of Mexico (Deep Sea Drilling Project, Leg 1, Site 3). Colorado School of Mines Quarterly. 67: 1-103. gs :: :: ::

Ellis, C. H. & Lohmann, W. H. (1973). Toweius petalosus new species, a Paleocene calcareous nannofossil from Alabama. Tulane Studies in Geology and Paleontology. 10: 107-110. gs :: :: ::

Eltgroth, M. L., Watwood, R. L. & Wolfe, G. V. (2005). Production and Cellular Localization of Neutral Long-Chain Lipids in the Haptophyte Algae Isochrysis Galbana and Emiliania huxleyi. Journal of Phycology. 41: 1000-1009. gs :: :: :: doi:10.1111/j.1529-8817.2005.00128.x

Emiliani, C. (1993). Viral extinctions in deep-sea species. Nature. 366: 217-218. gs :: :: :: doi:10.1038/366217a0

Endo, H., Yoshida, M., Uji, T., Saga, N., Inoue, K. & Nagasawa, H. (2016). Stable Nuclear Transformation System for the Coccolithophorid Alga Pleurochrysis carterae. Scientific Reports. 6(22252): 1-10. gs :: :: :: doi:10.1038/srep22252 2016

Engel, A. (2002). Direct relationship between CO2 uptake and transparent exopolymer particles production in natural phytoplankton. Journal of Plankton Research. 24(1): 49-53. gs :: :: ::

Engel, A. et al. (2009a). Investigating the effect of ballasting by CaCO3 in Emiliania huxleyi, II: Decomposition of particulate organic matter. Deep-Sea Research Part II: Topical Studies in Oceanography. 56: 1408-1419. gs :: :: ::

Engel, A. et al. (2004). Transparent exopolymer particles and dissolved organic carbon production by Emiliania huxleyi exposed to different CO2 concentrations: a mesocosm experiment. Aquatic Microbial Ecology. 34: 93-104. gs :: :: :: doi:10.3354/ame034093

Engel, A., Szlosek, J., Abramson, L., Liu, Z. & Lee, C. (2009b). Investigating the effect of ballasting by CaCO3 in Emiliania huxleyi: I. Formation, settling velocities and physical properties of aggregates. Deep-Sea Research Part II: Topical Studies in Oceanography. 56: 1396-1407. gs :: :: ::

Engel, A. et al. (2005). Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments. Limnology and Oceanography. 50(2): 493-507. gs :: :: :: doi:10.4319/lo.2005.50.2.0493

Erba, E. (1988). Prae-Jurassic and Jurassic calcareous nannofossil bibliography: An update. INA Newsletter. 10(2): 94-102. gs :: :: :: doi:10.58998/nina2083

Erba, E. (1992). Middle Cretaceous calcareous nannofossils from the western Pacific (ODP Leg 129): evidence for palaeoequatorial crossings. Proceedings of the Ocean Drilling Program, Scientific Results. 129: 189-201. gs :: :: :: doi:10.2973/odp.proc.sr.129.119.1992

Erba, E. (1994). Nannofossils and superplumes: The Early Aptian "nannoconid crisis". Paleoceanography. 9(483-501): -. gs :: :: :: doi:10.1029/94PA00258

Erba, E. (2004). Calcareous nannofossils and Mesozoic oceanic anoxic events. In, Villa, G., Lees, J. A. & Bown, P. R. (eds) Calcareous Nannofossil Palaeoecology and Palaeocenographic Reconstructions, Proceedings of the INA9 conference, Parma 2002. Marine Micropaleontology . 52(1-4): 85-106. gs :: :: :: doi:10.1016/j.marmicro.2004.04.007

Erba, E. (2006). The first 150 million years history of calcareous nannoplankton: Biosphere–geosphere interactions. Palaeogeography Palaeoclimatology Palaeoecology. 232: 237-250. gs :: :: :: doi:10.1016/j.palaeo.2005.09.013

Erba, E., Bartolini, A. & Larson, R. L. (2004). Valanginian Weissert oceanic anoxic event. Geology. 32(2): 149-152. gs :: :: :: doi:10.1130/G20008.1

Erba, E., Bottini, C., Faucher, G., Gambacorta, G. & Visentin, S. (2019). The response of calcareous nannoplankton to Oceanic Anoxic Events: The Italian pelagic record. Bollettino della Societa Paleontologica Italiana. 58: 51-71. gs :: :: ::

Erba, E., Bottini, C., Weissert, H. J. & Keller, C. E. (2010). Calcareous Nannoplankton Response to Surface-Water Acidification Around Oceanic Anoxic Event 1a. Science. 329: 428-432. gs :: :: :: doi:10.1126/science.1188886

Erba, E., Bottini, C., Weissert, H. J. & Keller, C. E. (2011). Response to Comment on "Calcareous Nannoplankton Response to Surface-Water Acidification Around Oceanic Anoxic Event 1a". Science. 175: 1-2. gs :: :: :: doi:10.1126/science.1199608

Erba, E., Castradori, D. & Cobianchi, M. (1992a). Compilation of upper Triassic and Jurassic calcareous nannofossil ranges. In, Monechi, S., Proto-Decima, F. & Rio, D. (eds) Proceedings of the International Nannoplankton Association Conference, Firenze, 1989. Memorie di Scienze Geologiche . 43: -. gs :: :: ::

Erba, E., Castradori, D., Guasti, G. & Ripepe, M. (1992b). Calcareous nannofossils and Milankovitch cycles: the example of the Albian Gault Clay Formation (Southern England). Palaeogeography Palaeoclimatology Palaeoecology. 93: 47-69. gs :: :: :: doi:10.1016/0031-0182(92)90183-6

Erba, E. et al. (1999). Integrated stratigraphy of the Cismon APTICORE (southern Alps, Italy): a “reference section” for the Barremian–Aptian interval at low latitudes. Journal of Foraminiferal Research. 29: 371-391. gs :: :: ::

Erba, E. & Covington, J. M. (1992). Calcareous nannofossil biostratigraphy of Mesozoic sediments recovered from the Western Pacific, Leg 129. Proceedings of the Ocean Drilling Program, Scientific Results. 129: 179-178. gs :: :: :: doi:10.2973/odp.proc.sr.129.118.1992

Erba, E., Miniati, F. & Bottini, C. (2024). Calcareous nannofossil paleoceanography across Oceanic Anoxic Event 3: From local to global perturbations. Journal of Nannoplankton Research. 42(S): 48-48. gs :: :: :: doi:10.58998/jnr3226

Erba, E. & Tremolada, F. (2004). Nannofossil carbonate fluxes during the Early Cretaceous: Phytoplankton response to nutrification episodes, atmospheric CO2, and anoxia. Paleoceanography. 19: 1-18. gs :: :: :: doi:10.1029/2003PA000884

Eris, K. K. et al. (2007). The timing and evolution of the post-glacial transgression across the Sea of Marmara shelf south of I_stanbul. Marine Geology. 243: 57-76. gs :: :: :: doi:10.1016/j.margeo.2007.04.010

Escobar Castro, A. M., Sanchez Arango, J. & Perera Falcon, C. (1998). Aplicacion del nanoplancton calcareo en la explotacion de hidrocarburos. Nanoflora en el interval Cretacico Superior - Eoceno en Cuba Central. In, Tercer Congreso Cubano de Geología y Minería, Memorias. 2: 281-284. gs :: :: ::

Eshet, Y. (1996). Obtaining rich nannofossil assemblages from 'barren' samples: processing organic-rich rocks in nannofossil investigations. Journal of Nannoplankton Research. 18(1): 17-21. gs :: :: :: doi:10.58998/jnr2084

Eshet, Y. & Almogi-Labin, A. (1996). Calcareous nannofossils as palaeoproductivity indicators in Upper Cretaceous organic-rich sequences in Israel. Marine Micropaleontology. 29: 37-62. gs :: :: :: doi:10.1016/0377-8398(96)00006-0

Eshet, Y. & Moshkovitz, S. (1995). New nannofossil biostratigraphy for Upper Cretaceous organic-rich carbonates in Israel. Micropaleontology. 41(4): 321-341. gs :: :: ::

Eshet, Y., Moshkovitz, S., Habib, D., Benjamini, C. & Magaritz, M. (1992). Calcareous nannofossil and dinoflagellate stratigraphy across the Cretaceous/Tertiary boundary at Hor Hahar, Israel. Marine Micropaleontology. 18: 199-228. gs :: :: :: doi:10.1016/0377-8398(92)90013-A

Estebenet, M. S. G., Guler, M. V. & Panera, J. P. P. (2021). Late Maastrichtian to Danian organic-walled dinoflagellate cysts and calcareous nannofossils from eastern Austral Basin, Patagonia, Argentina. Review of Palaeobotany and Palynology. 285: 1-18. gs :: :: :: doi:10.1016/j.revpalbo.2020.104342

Estep, K. W., Davis, P. G., Hargraves, P. E. & Sieburth, J. M. (1984). Chloroplast containing microflagellates in natural populations of North Atlantic nanoplankton, their identification and distribution, including a description of five new species of Chrysochromulina (Prymnesiophyceae). Protistologica. 20: 613-634. gs :: :: ::

Estep, K. W. & MacIntyre, F. (1989). Taxonomy, life cycle, distribution and dasmotrophy of Chrysochromulina: a theory accounting for scales, haptonema, muciferous bodies and toxicity. Marine Ecology Progress Series. 57: 11-21. gs :: :: :: doi:10.3354/meps057011

Estrada, E., Vareal, R. A., Salat, J., Cruzado, A. & Arias, E. (1999). Spatio-temporal variability of the winter phytoplankton distribution across the Catalan and North Balearic fronts (NW Mediterranean). Journal of Plankton Research. 21(1): 1-20. gs :: :: :: doi:10.1093/plankt/21.1.1

Estrada, M. (1985). Deep phytoplancton and chorophyll maxima in the Western Mediterranean. In, Kiortsis, V. & Moraitou-Apostolopou, M. (eds) Mediterraneanean Marine Ecosystems. Plenum Press, London 247-277. gs :: :: ::

Estrada, M. (1991). Phytoplankton assemblages across a NW Mediterranean Front: changes from winter mixing to spring stratification. In, Ros, J. D. & Prat, N. (eds) Homage to Ramón Margalef. Or: Why there is such pleasure in studying nature. Oecologia aquatica . (10): 157-185. gs :: :: ::

Estrada, M., Marrasé, C. & Salat, J. (1996). In vivo Fluorescence/chlorophyll a ratio as an ecological indicator in oceanography. Scientia Marina. 60: 317-325. gs :: :: ::

Estrada, M. & Salat, J. (1989). Phytoplankton assemblages of deep and surface water layers in a Mediterranean frontal zone. Scientia Marina. 53: 203-214. gs :: :: ::

Estrada, M. et al. (2016). Phytoplankton across tropical and subtropical regions of the Atlantic, Indian and Pacific Oceans. PLoS One. 11(3): 1-29. gs :: :: :: doi:10.1371/journal. pone.0151699

Evans, C., Malin, G., Wilson, W. H. & Liss, P. S. (2006). Infectious titers of Emiliania huxleyi virus 86 are reduced by exposure to millimolar dimethyl sulfide and acrylic acid. Limnology and Oceanography. 51(5): 2468-2471. gs :: :: :: doi:10.4319/lo.2006.51.5.2468

Evans, C., Pond, D. W. & Wilson, W. H. (2009). Changes in Emiliania huxleyi fatty acid profiles during infection with E. huxleyi virus 86: physiological and ecological implications. Aquatic Marine Ecology. 55: 219-228. gs :: :: :: doi:10.3354/ame01295

Everett, R. W. J. (1982). Using Nannofossil Counts in the Interpretation of Subsurface Deltas. Transactions of the Gulf-Coast Association of Geological Societies. 32: 579-591. gs :: :: ::

Exon, N. F. et al. (1990). BMR Geoscience Research Cruise 95 Triassic and Jurassic sequences of the Northern Exmouth Plateau and offshore Canning Basin. BMR Record. 1990(157): 1-76. gs :: :: O ::

Eyal, Z. et al. (2022). The variability in the structural and functional properties of coccolith base plates. Acta Biomaterialia. 148: 336-344. gs :: :: ::

Eynaud, F., Giraudeau, J., Pichon, J. -J. & Pudsey, C. J. (1999). Sea-surface distribution of coccolithophores, diatoms, silicoflagellates and dinoflagellates in the South Atlantic Ocean during the late austral summer 1995. Deep-Sea Research Part I: Oceanographic Research Papers. 46: 451-482. gs :: :: ::

Fabry, V. J. (2008). Marine Calcifiers in a High-CO2 Ocean. Science. 320(5879): 1020-1022. gs :: :: :: doi:10.1126/science.1157130

Fabry, V. J., Seibel, B. A., Feely, R. A. & Orr, J. C. (2008). Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science: Journal du Conseil. 65(3): 414-432. gs :: :: :: doi:10.1093/icesjms/fsn048

Fadiya, L. S. (2013). Two new short-ranged Calcidiscus species from the offshore marine Neogene Niger Delta sequences. Micropaleontology. 58(6): 539-542. gs :: :: :: doi:10.47894/mpal.58.6.05

Fadiya, L. S. & Salami, B. M. (2015). A Neogene calcareous nannofossil biozonation scheme for the deep offshore Niger Delta. Journal of African Earth Sciences. 112: 251-275. gs :: :: :: doi:10.1016/j.jafrearsci.2015.08.018

Fadiya, L. S. & Salami, M. B. (2012). Middle Miocene Carbonate Crash in the Niger Delta: Evidence from Calcareous Nannofossils. Journal of Nannoplankton Research. 32(2): 59-70. gs :: :: :: doi:10.58998/jnr2085

Fadiya, S. L. (2016). Size and shape variations of Discoaster quinqueramus in the Late Miocene NN11 Zone of offshore Gulf of Guinea region. Micropaleontology. 62(5): 353-364. gs :: :: :: doi:10.47894/mpal.62.5.02

Fadiya, S. L., Coker, S. J. L., Ekun, O. A., Fadiya, M. O. & Ariyo, T. S. (2021). Danian/Maastrichtian hiatus: A basin-wide event in the eastern Benin (Dahomey) Basin, Nigeria based on evidence from calcareous nannofossils. Journal of African Earth Sciences. 179: 1-17. gs :: :: :: doi:10.1016/j.jafrearsci.2021.104178

Fagerbakke, K. M., Heldal, M., Norland, S., Heimdal, B. R. & Batvik, H. (1994). Emiliania huxleyi. Chemical composition and size of coccoliths from enclosure experiments and a Norwegian fjord. Sarsia. 79(4): 349-355. gs :: :: :: doi:10.1080/00364827.1994.10413566

Falk, H. & Wolkenstein, K. (2017). Natural product molecular fossils. In, Kinghorn, A. D., Falk, H., Gibbons, S. & Kobayashi, J. (eds) Progress in the Chemistry of Organic Natural Products. Springer International 104: 1-126. gs :: :: :: doi:10.1007/978-3-319-45618-8_1

Falkowski, P. G. (2000). Rationalizing elemental ratios in unicellular algae. Journal of Phycology. 36(1): 3-6. gs :: :: :: doi:10.1046/j.1529-8817.2000.99161.x

Falkowski, P. G. (2002). The ocean´s invisible forest. Scientific American. 2002(August): 54-61. gs :: :: ::

Falkowski, P. G. et al. (2004a). The Evolution of Modern Eukaryotic Phytoplankton. Science. 305: 354-360. gs :: :: :: doi:10.1126/science.1095964

Falkowski, P. G. & Knoll, A. H. (2007). Evolution of primary producers in the sea. Academic Press, . 1-441. gs :: :: :: doi:10.1016/B978-012370518-1/50002-3

Falkowski, P. G., Schofield, O., Katz, M. E., van de Schootbrugge, B. & Knoll A. H. (2004b). Why is the Land Green and the Ocean Red? In, Thierstein, H. R. & Young, J. R. (eds) Coccolithophores - From molecular processes to global impact. Springer, Berlin 429-454. gs :: :: :: doi:10.1007/978-3-662-06278-4_16

Fantasia, A. et al. (2021). The middle-late Aalenian event: A precursor of the Mesozoic Marine Revolution. Global and Planetary Change. 1-. gs :: :: :: doi:10.1016/j.gloplacha.2021.103705

Farhan, A. (1987). Evolutionary Trend of the Genus Lithastrinus to the Genus Uniplanarius. Abhandlungen der Geologischen Bundesanstalt. 39: 57-65. gs :: :: ::

Farhan, A. J., Burnett, J. A., Bown, P. R. & Lord, A. R. (1994). Holococcoliths from the Upper Cretaceous of Alabama and Mississippi (USA). Cahiers de Micropaléontologie. 9: 57-73. gs :: :: ::

Farida, M., Imai, R. & Sato, T. (2012). Miocene to Pliocene Paleoceanography of the Western Equatorial Pacific Ocean Based on Calcareous Nannofossils, ODP Hole 805B. Open Journal of Geology. 2: 72-79. gs :: :: :: doi:10.4236/ojg.2012.22008

Farida, M., Jaya, A., Ahmad, A. & Nugraha, J. (2024). The Eocene to Oligocene boundary and paleoclimatic indications based on calcareous nannofossils of Tonasa Formation, South Sulawesi, Indonesia. Fossil Record. 27(1): 221-231. gs :: :: :: doi:10.3897/fr.27.96985

Farinacci, A. (1969a). Catalogue of calcareous nannofossils. Edizioni Tecnoscienza, Roma. -. gs :: :: ::

Farinacci, A. (1969b). The smallest planktonic calcareous forms of Jurassic micrites. In, Bronnimann, P. & Renz, H. H. (eds) Proceedings of the First International Conference on Planktonic Microfossils, Geneva 1967. E. J. Brill, Leiden 224-228. gs :: :: ::

Farinacci, A. (1971). Round Table on calcareous Nannoplankton.Roma, September 23-28, 1970. In, Farinacci, A. (ed.) Proceedings of the Second Planktonic Conference Roma 1970. Ed. Tecnoscienza, Roma (II): 1343-1369. gs :: :: ::

Faris, M. & Abu Shama, A. M. (2007). Nannofossil biostratigraphy of the Paleocene-lower Eocene succession in the Thamad area, east central Sinai, Egypt. Micropaleontology. 53(1-2): 127-144. gs :: :: :: doi:10.2113/gsmicropal.53.1-2.127

Faris, M., Farouk, S. & Shabaan, M. (2021). An overview of the Paleocene-Eocene calcareous nannofossil biostratigraphy and bioevents in Egypt. In, Montenari, M. (ed.) Stratigraphy & Timescales 6. Academic Press (3): 225-292. gs :: :: :: doi:10.1016/bs.sats.2021.09.003

Faris, M., Ghandour, I. M. & Maejima, W. (2007). Calcareous nannofossils biostratigraphy and mineralogical change across the Cretaceous/Paleogene boundary at Wadi Nukhul, southwestern Sinai, Egypt. Journal of Geosciences, Osaka City University. 50: 15-34. gs :: :: ::

Faris, M., Ghandour, I. M., Zahran, E. & Mosa, G. (2015). Calcareous nannoplankton changes during the Paleocene-Eocene Thermal Maximum in West Central Sinai, Egypt. Turkish Journal of Earth Sciences. 24(5): 475-493. gs :: :: :: doi:10.3906/yer-1412-34

Faris, M., El-Kahawy, R. M. & Kasem, A. M. (2024). Variations in calcareous nannofossil assemblages and paleoenvironmental studies on the Danian – Selandian succession at the Qreiya area, East Qena, Eastern Desert, Egypt. Frontiers in Scientific Research and Technology. 9: 100-116. gs :: :: ::

Farouk, S. & Faris, M. (2012). Late Cretaceous calcareous nannofossil and planktonic foraminiferal bioevents of the shallow-marine carbonate platform in the Mitla Pass, west central Sinai, Egypt,. Cretaceous Research. 33(1): 50-65. gs :: :: :: doi:10.1016/j.cretres.2011.08.002

Farouk, S. & Faris, M. (2013). Calcareous nannofossil and foraminiferal bio-events of the Danian-Selandian transition of the Quseir area, northwestern Red Sea margin, Egypt. Micropaleontology. 59(2-3): 201-222. gs :: :: :: doi:10.47894/mpal.59.2.10

Farouk, S., Faris, M., Bazeen, Y. S., Elamri, Z. & Ahmad, F. (2021). Upper Campanian-lower Maastrichtian integrated carbon isotope stratigraphy and calcareous microplankton biostratigraphy of North-central Tunisia. Marine Micropaleontology. 166: 1-21. gs :: :: :: doi:10.1016/j.marmicro.2021.102003

Farouk, S., Faris, M., Elamri, Z., Ahmad, F. & Wagreich, M. (2018). Tethyan plankton bioevents calibrated to stable isotopes across the upper Santonian–lower Campanian transition in north-western Tunisia,. Cretaceous Research. 85: 128-141. gs :: :: :: doi:10.1016/j.cretres.2017.12.010

Farouk, S., Jain, S., Faris, M., Elamri, Z. & Ahmad, F. (2019). Campanian carbon isotope calibrated paleofertility estimates from northwestern Tunisia: Inferences from calcareous nannofossils. Marine Micropaleontology. 148: 78-102. gs :: :: :: doi:10.1016/j.marmicro.2019.03.009

Farouk, S. et al. (2022). High resolution upper Cenomanian to Turonian paleoenvironmental changes: Inferences from calcareous nannofossils at the Oued Ettalla section (Central Tunisia). Marine Micropaleontology. 175: 1-20. gs :: :: :: doi:doi.org/10.1016/j.marmicro.2022.102151

Faucher, G., Erba, E., Bottini, C. & Gambacorta, G. (2017a). Calcareous nannoplankton response to the latest Cenomanian oceanic anoxic event 2 perturbation. Rivista Italiana di Paleontologia e Stratigrafia. 123(1): 159-176. gs :: :: O ::

Faucher, G., Hoffmann, L., Bach, L. T., Bottini, C., Erba, E. & Riebesell, U. (2017b). Impact of trace metal concentrations on coccolithophore growth and morphology: laboratory simulations of Cretaceous stress. Biogeosciences. 14(14): 3603-3613. gs :: :: :: doi:10.5194/bg-14-3603-2017

Faucher, G., Riebesell, U. & Bach, L. T. (2020). Can morphological features of coccolithophores serve as a reliable proxy to reconstruct environmental conditions of the past? Climate of the Past. 16: 1007-1025. gs :: :: :: doi:10.5194/cp-16-1007-2020

Faucher, G., Visentin, S., Gambacorta, G. & Erba, E. (2022). Schizosphaerella size and abundance variations across the Toarcian Oceanic Anoxic Event in the Sogno Core (Lombardy Basin, Southern Alps). Palaeogeography Palaeoclimatology Palaeoecology. 595: 1-. gs :: :: :: doi:10.1016/j.palaeo.2022.110969

Fauconnier, D., Courtinat, B., Gardin, S., Lachkar, G. & Rauscher, R. (1996). Biostratigraphy of Jurassic and Triassic successions in the Balazuc-1 borehole (GPF Programme). Stratigraphic setting inferred from dinoflagellate cysts, pollen, spores and calcareous nannofossils,. Marine and Petroleum Geology. 13(6): 707-724. gs :: :: :: doi:10.1016/0264-8172(95)00024-0

Feazel, C. T. & Farrell, H. E. (1988). Chalk from the Ekofisk Area, North Sea: Nannofossils + Micropores = Giant Fields. SEPM Society for Sedimentary Geology. -. gs :: :: :: doi:10.2110/cor.88.12

Feldmesser, E., Ben-Dor, S. & Vardi, A. (2021). An Emiliania huxleyi pan-transcriptome reveals basal strain specificity in gene expression patterns. Scientific Reports. 11(1): 20795-20795. gs :: :: :: doi:10.1038/s41598-021-00072-5.

Feng, Y., Roleda, M. Y., Armstrong, E., Boyd, P. W. & Hurd, C. L. (2016). Environmental controls on the growth, photosynthetic and calcification rates of a Southern Hemisphere strain of the coccolithophore Emiliania huxleyi. Limnology and Oceanography. -. gs :: :: :: doi:10.1002/lno.10442

Feng, Y. et al. (2008). Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae). European Journal of Phycology. 43(1): 87-98. gs :: :: :: doi:10.1080/09670260701664674

Fenner, J. (1991). Rare and unknown non-calcareous microfossils recovered from Leg 114 sites. Proceedings of the Ocean Drilling Program, Scientific Results. 114: 303-310. gs :: :: ::

Fenner, J. & di Stefano, A. (2004). Late Quaternary oceanic fronts along Chatham Rise indicated by phytoplankton assemblages, and refined calcareous nannofossil stratigraphy for the mid-latitude SW Pacic. Marine Geology. 205: 59-86. gs :: :: :: doi:10.1016/S0025-3227(04)00018-0

Fensome, R. A., Taylor, F. J. R., Norris, G., Sarjeant, W. A. S., Wharton, D. I. & Williams, G. L. (1993). A classification of living and fossil dinoflagellates. Micropaleontology, Special Publication. 7: 1-351. gs :: :: ::

Fernandez, E., Balch, W. M., Marañon, E. & Holligan, P. M. (1994). High rates of lipid biosynthesis in cultured, mesocosm and coastal populations of the coccolithophore Emiliania huxleyi. Marine Ecology Progress Series. 114: 13-22. gs :: :: :: doi:10.3354/meps114013

Fernandez, E., Boyd, P., Holligan, P. & Harbour, D. S. (1993). Production of organic and inorganic carbon within a large-scale coccolithophore bloom in the northeast Atlantic Ocean. Marine Ecology Progress Series. 97: 271-285. gs :: :: :: doi:10.3354/meps097271

Fernández, E., Fritz, J. J. & Balch, W. M. (1996a). Chemical composition of the coccolithophorid Emilianid huxleyi under light-limited steady state growth. Journal of Experimental Marine Biology and Ecology. 207(1-2): 149-160. gs :: :: :: doi:10.1016/S0022-0981(96)02657-3

Fernandez, E., Marañon, E. & Balch, W. M. (1996a). Intracellular partitioning in the coccoccolithophorid Emiliania huxleyi. Journal of Marine Systems. 9: 57-66. gs :: :: :: doi:10.1016/0924-7963(96)00016-4

Fernando, A. G. S et al. (2020). Pliocene four-rayed discoasters from IODP Expedition 363 sites in the eastern Indian Ocean and western Pacific Ocean. Journal of Nannoplankton Research. 38(1): 49-55. gs :: :: :: doi:10.58998/jnr2090

Fernando, A. G. S. (2014). Taxonomic note: Watznaueria okadai, a newspecies of calcareous nannofossil from the Vocontian Basin, southeastern France. Journal of Nannoplankton Research. 33(1): 47-48. gs :: :: :: doi:10.58998/jnr2087

Fernando, A. G. S., Fernandez, A. R. C. & Wiesner, M. G. (2013). Braarudosphaera bigelowii morphotypes in the surface sediments of the southwestern South China Sea. Micropaleontology. 59(6): 579-586. gs :: :: :: doi:10.47894/mpal.59.6.04

Fernando, A. G. S. et al. (2011). Calcareous nannofossil biostratigraphic study of forearc basin sediments: Lower to Upper Cretaceous Budden Canyon Formation (Great Valley Group), northern California, USA. Island Arc. 20(3): 346-370. gs :: :: :: doi:10.1111/j.1440-1738.2011.00770.x

Fernando, A. G. S. & Okada, H. (2007). New calcareous nannofossil species from the Cretaceous Budden Canyon Formation, Great Valley Sequence, northern California (USA). Journal of Nannoplankton Research. 29(1): 1-4. gs :: :: :: doi:10.58998/jnr2086

Fernando, A. G. S., Okada, H., Nishi, H. & Takashima, R. (2006). Use of a microdrill for high stratigraphical resolution calcareous nannofossil analysis, and a modified filtration method. Journal of Nannoplankton Research. 28(2): 85-88. gs :: :: :: doi:10.58998/jnr2088

Fernando, A. G. S., Peleo-Alampay, A. M. & Wiesner, M. G. (2007a). Calcareous nannofossils in surface sediments of the eastern and western South China Sea. Marine Micropaleontology. 66: 1-26. gs :: :: :: doi:10.1016/j.marmicro.2007.07.003

Fernando, A. G. S., Peleo-Alampay, A. M., Lucero, E. S. & Wiesner, M. G. (2007b). Surface sediment distribution of Florisphaera profunda in the South China Sea: an effect of dissolution? Journal of Nannoplankton Research. 29(2): 102-107. gs :: :: :: doi:10.58998/jnr2089

Fernando, A. G. S., Takashima, R., Nishi, H., Giraud, F. & Okada, H. (2010). Calcareous nannofossil biostratigraphy of the Thomel Level (OAE2) in the Lambruisse section, Vocontian Basin, southeast France. In, Giraud, F. & Mattioli, M. (eds) Recent advances in living coccolithophore and calcareous nannofossil studies, Proceedings of INA12, Lyon 2008. Geobios . 43(1): 45-57. gs :: :: :: doi:10.1016/j.geobios.2009.11.003

Ferreira, E. P., Alves, C. F., Sanjinés, A. E. S. & Alves, M. C. (2019a). Ascidian spicules of Quaternary sediments from the lower slope of the Campos Basin (Brazil). Quaternary International. 508: 116-124. gs :: :: :: doi:10.1016/j.quaint.2018.11.008

Ferreira, J., Cachao, M. & Gonzalez, R. (2008). Reworked calcareous nannofossils as ocean dynamic tracers: The Guadiana shelf case study (SW Iberia). Estuarine Coastal and Shelf Science. 79: 59-70. gs :: :: :: doi:10.1016/j.ecss.2008.03.012

Ferreira, J., Mattioli, E., Pittet, B., Cachao, M. & Spangenberg, J. E. (2015). Palaeoecological insights on Toarcian and lower Aalenian calcareous nannofossils from the Lusitanian Basin (Portugal). Palaeogeography Palaeoclimatology Palaeoecology. 436: 245-262. gs :: :: :: doi:10.1016/j.palaeo.2015.07.012

Ferreira, J., Mattioli, E. & van de Schootbrugge, B. (2017). Palaeoenvironmental vs. evolutionary control on size variation of coccoliths across the Lower-Middle Jurassic. Palaeogeography Palaeoclimatology Palaeoecology. 465(A): 177-192. gs :: :: :: doi:10.1016/j.palaeo.2016.10.029

Ferreira, J. et al. (2019b). Western Tethys Early and Middle Jurassic calcareous nannofossil biostratigraphy. Earth-Science Reviews. 197: 1-19. gs :: :: :: doi:10.1016/j.earscirev.2019.102908

Fiala, M., Kopczynska, E. E., Oriol, L. & Machado, Maria-C. (2004). Phytoplankton variability in the Crozet Basin frontal zone (Southwest Indian Ocean) during austral summer. Journal of Marine Systems. 50: 243-261. gs :: :: :: doi:10.1016/j.jmarsys.2004.01.008

Fichtinger-Schepman, A. M. J., Kamerling, J. P., Versluis, C. & Vliegenthart, J. F. G. (1981). Structural studies of the methylated acidic polysaccharide associated with coccoliths of Emiliania huxleyi (Lohmann) Kamptner. Carbohydrate Research. -. gs :: :: ::

Fielding, S. R., Herrle, J. O., Bollmann, J., Worden, R. H. & Montagnes, D. J. S. (2009). Assessing the applicability of Emiliania huxleyi coccolith morphology as a sea-surface salinity proxy. Limnology and Oceanography. 54(5): 1475-1480. gs :: :: :: doi:10.4319/lo.2009.54.5.1475

Filatov, D. A, Bendif, M. el, Odysseas A, Hagino, K. & Rickaby, R. E. M. (2021b). Global compilation of the first occurrence of Gephyrocapsa huxleyi and other Gephyrocapsa species from sediment core samples. PANGAEA. Dataset (935786): -. gs :: :: :: doi:10.1594/PANGAEA.935786

Filatov, D. A., Bendif, E. M., Archontikis, O. A., Hagino, K. & Rickaby, R. E. M. (2021a). The mode of speciation during a recent radiation in open-ocean phytoplankton. Current Biology. 31: 1-11. gs :: :: :: doi:10.1016/j.cub.2021.09.073

Fileman, E. S., Cummings, D. G. & Llewellyn, C. A. (2002). Microplankton community structure and the impact of microzooplankton grazing during an Emiliania huxleyi bloom, off the Devon coast. Journal of the Marine Biological Association of the United Kingdom. 82: 359-368. gs :: :: :: doi:10.1017/S0025315402005593

Filewicz, M. & Hill, M. E. (1983). Calcareous nannofossil biostratigraphy of the Santa Susana and Llajas formations, north side Simi Valley. In, Squires, R. R. & Filewicz, M. V. (eds) Cenozic geology of the Simi Valley, Southern California. SEPM Field Trip Guidebook . 45-60. gs :: :: ::

Filewicz, M. V. (1985). Calcareous nannofossil biostratigraphy of the Middle America Trench and slope, Deep Sea Drilling Project Leg 84. Initial Reports of the Deep Sea Drilling Project. 84: 339-361. gs :: :: :: doi:10.2973/dsdp.proc.84.108.1985

Filipescu, M. & Dragastan, O. (1963). Asupra prezentei unor depozite cu Nannoconus in sedimentele Jurasico-Cretacice din R. P. Romina. [On the presences of deposits of Nannoconus in the Jurassic-Cretaceous sediments of Romania]. Studii si Cercetari de Geologie Geofizica Geografie. 8: 185-193. gs :: :: ::

Filipescu, M. & Hanganu, E. (1960). Sur les Discoastérides du Tertiare du N-O de l'Olténie. Revue Roumaine de Géologie Géophysique et Géographie. Serie de Géologie 4(2): 217-232. gs :: :: ::

Fincham, M. J. & Winter, A. (1989). Paleoceanographic Interpretations of Coccoliths and Oxygen-Isotopes from the Sediment Surface of the Southwest Indian Ocean. Marine Micropaleontology. 13: 325-351. gs :: :: :: doi:10.1016/0377-8398(89)90024-8

Findlay, C. S. (1998). Living and fossil calcareous nannoplankton from the Australian sector of the Southern Ocean: Implications for paleoceanography. PhD thesis, Tasmania. -. gs :: :: ::

Findlay, C. S. & Flores, J. A. (2000). Subtropical front fluctuations south of Australia (45°09'S, 146°17'E) for the last 130ka years based on calcareous nannoplankton. Marine Micropaleontology. 40(4): 403-416. gs :: :: ::

Findlay, C. S. & Giraudeau, J. (2000). Extant calcareous nannoplankton in the Australian sector of the Southern Ocean (austral summers 1994 and 1995). Marine Micropaleontology. 40(4): 417-439. gs :: :: :: doi:10.1016/S0377-8398(00)00046-3

Findlay, C. S. & Giraudeau, J. (2002). Movement of oceanic fronts south of Australia during the last 10 ka: interpretation of calcareous nannoplankton in surface sediments from the Southern Ocean. Marine Micropaleontology. 46: 431-444. gs :: :: :: doi:10.1016/S0377-8398(02)00084-1

Findlay, C. S., Young, J. R. & Scott, F. J. (2005). Haptophtyes: Order Coccolithophorales. In, Scott, F. J. & Marchant, H. J. (eds) Antarctic Marine Protists. Australian Biological Resources Study, Canberra 276-294. gs :: :: ::

Fink, C., Baumann, K-H., Groeneveld, J. & Steinke, S. (2010). Strontium/Calcium ratio, carbon and oxygen stable isotopes in coccolith carbonate from different grain-size fractions in South Atlantic surface sediments. In, Giraud, F. & Mattioli, M. (eds) Recent advances in living coccolithophore and calcareous nannofossil studies, Proceedings of INA12, Lyon 2008. Geobios . 43(1): 151-164. gs :: :: :: doi:10.1016/j.geobios.2009.11.001

Finkel, Z. V. et al. (2007). A universal driver of macroevolutionary change in the size of marine phytoplankton over the Cenozoic. Proceedings of the National Academy of Sciences, USA. 104(51): 20416-20420. gs :: :: :: doi:10.1073/pnas.0709381104

Fiorentino, A. (1995). Calcareous nannofossil stratigraphy of Maastrichtian sections in Israel,. Cretaceous Research. 16(2–3): 327-341. gs :: :: :: doi:10.1006/cres.1995.1024

Fiorentino, A. (1998). The potential of nannofossil analysis applied to archaeological studies: the case of Theriace's bronzes. Journal of Nannoplankton Research. 20(2): 101-103. gs :: :: :: doi:10.58998/jnr2091

Fiorini, S., Middelburg, J. J. & Gattuso, J. -P. (2011a). Effects of elevated CO2 partial pressure and temperature on the coccolithophore Syracosphaera pulchra. Aquatic Microbial Ecology. 64: 221-232. gs :: :: :: doi:10.3354/ame01520

Fiorini, S., Middelburg, J. J. & Gattuso, J. -P. (2011b). Testing the effects of elevated pCO2 on coccolithophores (Prymnesiophyceae): comparison between haploid and diploid life stages. Journal of Phycology. 47: 1281-1291. gs :: :: :: doi:10.1111/j.1529-8817.2011.01080.x

Fioroni, C., Villa, G., Persico, D. & Jovane, L. (2015). Middle Eocene-Lower Oligocene calcareous nannofossil biostratigraphy and paleoceanographic implications from Site 711 (equatorial Indian Ocean). Marine Micropaleontology. 118: 50-62. gs :: :: :: doi:10.1016/j.marmicro.2015.06.001

Fioroni, C., Villa, G., Persico, D., Wise, S. W. & Pea, L. (2012). Revised middle Eocene-upper Oligocene calcareous nannofossil biozonation for the Southern Ocean. Revue de Micropaléontologie. 55(2): 53-70. gs :: :: :: doi:10.1016/j.revmic.2012.03.001

Firth, J. V. (1988). Craterolithus; a new calcareous nannofossil genus from the Oligocene of the Labrador Sea. Journal of Paleontology. 62(6): 853-854. gs :: :: :: doi:10.1017/S0022336000030110

Firth, J. V. (1989). Eocene and Oligocene calcareous nannofossils from the Labrador Sea, ODP Leg 105. Proceedings of the Ocean Drilling Program, Scientific Results. 105: 263-286. gs :: :: :: doi:10.2973/odp.proc.sr.105.131.1989

Firth, J. V. (1992). Analysis of the Taxonomic, biostratigraphic and evolutionary relationships of species of the calcareous nannofossil genus Cyclicargolithus (Bukry, 1971) from the upper Eocene and Oligocene of the North Atlantic. In, Monechi, S., Proto-Decima, F. & Rio, D. (eds) Proceedings of the International Nannoplankton Association Conference, Firenze, 1989. Memorie di Scienze Geologiche . 43: -. gs :: :: ::

Firth, J. V., Eldrett, J. S., Harding, I. C., Coxall, H. K. & Wade, B. S. (2013). Integrated biomagnetochronology for the Palaeogene of ODP Hole 647A: implications for correlating palaeoceanographic events from high to low latitudes. Geological Society of London, Special Publications. 373(1): 29-78. gs :: :: :: doi:10.1144/SP373.9

Firth, J. V. & Wise, S. W. (1992). A preliminary study of the evolution of Chiasmolithus in the Middle Eocene to Oligocene of sites 647 and 748. Proceedings of the Ocean Drilling Program, Scientific Results. 120: 494-508. gs :: :: :: doi:10.2973/odp.proc.sr.120.157.1992

Fischer, A. G., Honjo, S. & Garrison, R. E. (1967). Electron micrographs of limestones and their nannofossils. Princeton University Press, Princeton. -. gs :: :: ::

Fischer, G. & Karakaş, G. (2009). Sinking rates and ballast composition of particles in the Atlantic Ocean: Implications for the organic carbon fluxes to the deep ocean. Biogeosciences. 6(85): 85-102. gs :: :: :: doi:10.5194/bg-6-85-2009

Fisher, C. G. & Arthur, M. A. (2002). Water mass characteristics in the Cenomanian US Western Interior seaway as indicated by stable isotopes of calcareous organisms. Palaeogeography Palaeoclimatology Palaeoecology. 188(3–4): 189-213. gs :: :: :: doi:10.1016/S0031-0182(02)00552-7

Fisher, C. G. & Hay, W. W. (1999). Calcareous nannofossils as indicators of Mid-Cretaceous paleofertility along an ocean front, U. S. Western Interior. Geological Society of America. -. gs :: :: :: doi:10.1130/0-8137-2332-9.161

Fisher, C. G., Hay, W. W. & Eicher, D. L. (1994). Oceanic front in the Greenhorn Sea (late middle through late Cenomanian). Paleoceanography. 9(6): 879-892. gs :: :: :: doi:10.1029/94PA02114

Fisher, N. S. & Honjo, S. (1989). Intraspecific differences in temperature and salinity responses in the coccolithophore Emiliania huxleyi. Biological Oceanography. 6: 355-361. gs :: :: ::

Flores, J-A., Marino, M., Sierro, F. J., Hodell, D. A. & Charles, C. D. (2003). Calcareous plankton dissolution pattern and coccolithophore assemblages during the last 600 kyr at ODP Site 1089 (CapeBasin,SouthAtlantic):paleoceanographicimplications. Palaeogeography Palaeoclimatology Palaeoecology. 196: 409-426. gs :: :: :: doi:10.1016/S0031-0182(03)00467-X

Flores, J-A. & Sierro, F-J. (1987). Calcareous Plankton in the Tortonian/Messinian Transition Series of the Northwestern Edge of the Guadalquivir Basin. Abhandlungen der Geologischen Bundesanstalt. 39: 67-84. gs :: :: ::

Flores, J-A. & Sierro, F-J. (1989). Calcareous nannoflora and planktonic foraminifera in the Tortonian-Messinian boundary interval of East Atantic DSDP sites and their relation to Spanish and Moroccan boundary sections. In, Crux, J. A. & van Heck, S. E. (eds) Nannofossils and their applications: Proceedings of the 2nd INA Conference, London 1987. British Micropalaeontological Society Publication Series . 249-266. gs :: :: ::

Flores, J. -A. (1986). New combination of three species of asteroliths originally adscribed to Discoaster Tan 1927. INA Newsletter. 8(1): 33-35. gs :: :: :: doi:10.58998/nina2092

Flores, J. -A. et al. (2010). Distribution of large Emiliania huxleyi in the Central and Northeast Atlantic as a tracer of surface ocean dynamics during the last 25,000 years. Marine Micropaleontology. 76: 53-66. gs :: :: :: doi:10.1016/j.marmicro.2010.05.001

Flores, J. -A., Filippelli, G. M., Sierro, F. J. & Latimer, J. C. (2012). The “White Ocean” hypothesis: a late Pleistocene Southern Ocean governed by Coccolithophores and driven by phosphorus. Frontiers in Microbiology. 0.286805556: -. gs :: :: :: doi:10.3389/fmicb.2012.00233

Flores, J. A., Barcena, M. A. & Sierro, F. J. (2000a). Ocean-surface and wind dynamics in the Atlantic Ocean off Northwest Africa during the last 140 000 years. Palaeogeography Palaeoclimatology Palaeoecology. 161(3-4): 459-478. gs :: :: :: doi:10.1016/S0031-0182(00)00099-7

Flores, J. A., Gersonde, R. & Sierro, F. J. (1999). Pleistocene fluctuations in the Agulhas Current retroflections based on the calcareous plankton record. Marine Micropaleontology. 37: 1-22. gs :: :: :: doi:10.1016/S0377-8398(99)00012-2

Flores, J. A., Gersonde, R., Sierro, F. J. & Niebler, H. -S. (2000b). Southern Ocean Pleistocene calcareous nannofossil events: calibration with isotope and geomagnetic stratigraphies. Marine Micropaleontology. 40: 377-402. gs :: :: ::

Flores, J. A., Gersonde, R., Sierro, F. J. & Niebler, H. -S. (2001). Southern Ocean Pleistocene calcareous nannofossil events: calibration with isotope and geomagnetic stratigraphies. Marine Micropaleontology. 40: 377-402. gs :: :: ::

Flores, J. A. & Sierro, F. J. (1997). revised technique for calculation of calcreous nannofossil accumulation rates. Micropaleontology. 43(3): 321-324. gs :: :: :: doi:10.2307/1485832

Flores, J. A., Sierro, F. J., Francés, G., Vázquez, A. & Zamarreño, I. (1997). The last 100.000 years in the western Mediterranean: sea surface water and frontal dynamics as revealed by coccolithophores. Marine Micropaleontology. 29: 351-366. gs :: :: :: doi:10.1016/S0377-8398(96)00029-1

Flores, J. A., Sierro, F. J. & Glacon, G. (1992). Calcareous plankton analysis in the pre-evaporitic sediments of the ODP Site 654 (Tyrrhenian Sea, Western Mediterranean). Micropaleontology. 38(3): 279-288. gs :: :: :: doi:10.2307/1485792

Flores, J. A., Sierro, F. J. & Raffi, I. (1995). Evolution of the Calcareous Nannofossil Assemblage as a Response to the Paleoceanographic Changes in the Eastern Equatorial Pacific Ocean from 4 to 2 Ma (Leg 138, Sites 849 and 852). Proceedings of the Ocean Drilling Program, Scientific Results. 138: 163-176. gs :: :: :: doi:10.2973/odp.proc.sr.138.109.1995

Flores, Jose-A. & Sierro, F. J. (2007). Pronounced mid-Pleistocene southward shift of the Polar Front in the Atlantic sector of the Southern Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography. 54: 2432-2442. gs :: :: :: doi:10.1016/j.dsr2.2007.07.026

Flores, Jose-A. et al. (2005). Surface water dynamics and phytoplankton communities during deposition of cyclic late Messinian sapropel sequences in the western Mediterranean. Marine Micropaleontology. 56: 50-79. gs :: :: :: doi:10.1016/j.marmicro.2005.04.002

Flügel, V. E. & Franz, H. E. (1967). Über die lithogenetische Bedeutung von Coccolithen in Malmkalken des Flachwasserbereiches. Eclogae Geologicae Helvetiae. 60: 1-17. gs :: :: O ::

Flynn, K. J., Clark, D. R. & Wheeler, G. (2016). The role of coccolithophore calcification in bioengineering their environment. Proceedings of the Royal Society of London. Series B: Biological Sciences 283(1833): -. gs :: :: :: doi:10.1098/rspb.2016.1099

Fonseca, B. (1976). Coccolithus taganus, nouvelle espece de Coccolithopohride du Miocene de Lisbonne. Boletim de Sociedade Geologica de Portugal. 20: 29-32. gs :: :: ::

Forchheimer, S. (1968). Die Coccolithen des Gault-Cenoman, Cenoman und Turon in der Bohrung Höllviken I, Süd-west-Schweden. Sveriges Geologiska Undersökning, Series C. #635, 62(6): 1-64. gs :: :: ::

Forchheimer, S. (1970). Scanning electron microscope studies of some Cenomanian coccospheres and coccoliths from Bornholm (Denmark) and Köpingsberg (Sweden). Sveriges Geologiska Undersokning, Arsbok. 64(4): 1-43. gs :: :: O ::

Forchheimer, S. (1972). Scanning electron microscope studies of Cretaceous coccoliths from the Köpingsberg Borehole No. 1, SE Sweden. Sveriges Geologiska Undersökning, Series C. #668, 65: 1-141. gs :: :: O ::

Forchheimer, S. & Stradner, H. (1973). Scampanella, eine neue Gattung kretazischer Nannofossilien. Verhandlungen der Geologischen Bundesanstalt (Wien). 1973(2): 286-289. gs :: :: ::

Foresi, L. M. et al. (2011). Integrated stratigraphy of St. Peter’s Pool section (Malta): new age for the Upper Globigerina Limestone member and progress towards the Langhian GSSP. Stratigraphy. 8(2-3): 125-143. gs :: :: ::

Fornaciari, E. (2000). Calcareous Nannofossil Biostratigraphy of the California Margin. Proceedings of the Ocean Drilling Program, Scientific Results. 167: 3-40. gs :: :: :: doi:10.2973/odp.proc.sr.167.204.2000

Fornaciari, E. & Agnini, C. (2009). Taxonomic note: Sphenolithus pseudoheteromorphus, a new Miocene calcareous nannofossil species from the equatorial Indian Ocean. Journal of Nannoplankton Research. 30(2): 97-101. gs :: :: :: doi:10.58998/jnr2093

Fornaciari, E., Agnini, C., Catanzariti, R., Rio, D., Bolla, E. M. & Valvasoni, E. (2010). Mid- Latitude calcareous nannofossil biostratigraphy and biochronology across the middle to late Eocene transition. Stratigraphy. 7(4): 229-264. gs :: :: ::

Fornaciari, E., di Stefano, A., Rio, D. & Negri, A. (1996). Middle Miocene quantitative calcareous nannofossil biostratigraphy in the Mediterranean region. Micropaleontology. 42(1): 38-64. gs :: :: :: doi:10.2307/1485982

Fornaciari, E. et al. (2007). An expanded Cretaceous_Tertiary transition in a pelagic setting of the Southern Alps (central-western Tethys). Palaeogeography Palaeoclimatology Palaeoecology. 255: 98-131. gs :: :: :: doi:10.1016/j.palaeo.2007.02.044

Fornaciari, E., Raffi, I., Rio, D., Villa, G., Backman, J. & Olafsson, G. (1990). Quantitative distribution patterns of Oligocene and Miocene calcareous nannofossils from the western equatorial Indian Ocean. Proceedings of the Ocean Drilling Program, Scientific Results. 115: 237-254. gs :: :: :: doi:10.2973/odp.proc.sr.115.153.1990

Fornaciari, E. & Rio, D. (1996). Latest Oligocene to early Middle Miocene quantitative calcareous nannofossil biostratigraphy in the Mediterranean region. Micropaleontology. 42(1): 1-37. gs :: :: :: doi:10.2307/1485982

Foroughi, F., Gardin, S., Kani, A. L. & Vahidinia, M. (2017). Calcareous nannofossil biostratigraphy of Campanian strata (Abtalkh Formation) from the eastern Koppeh-Dagh Basin, NE Iran,. Cretaceous Research. 70: 55-70. gs :: :: :: doi:10.1016/j.cretres.2016.10.002

Forster, A. et al. (2008a). Geochemical and nannofossil analyses of Cenomanian/Turonian sediments of DSDP Hole 75-530A. PANGAEA. Data set (777673): -. gs :: :: :: doi:10.1594/PANGAEA.777673

Forster, A. et al. (2008b). The Cenomanian/Turonian oceanic anoxic event in the South Atlantic: New insights from a geochemical study of DSDP Site 530A. Palaeogeography Palaeoclimatology Palaeoecology. 267(3-4): 256-283. gs :: :: :: doi:10.1016/j.palaeo.2008.07.006

Fortiz, V. et al. (2024). Paleoceanographic Significance of Calcareous Nannofossil Assemblages in the Tropic Shale of Utah during Oceanic Anoxic Event 2 at the Cenomanian/Turonian Boundary Victoria. Micropaleontology. 30(3): 205-224. gs :: :: ::

Fournier, G. & Neukermans, G. (2017). An analytical model for light backscattering by coccoliths and coccospheres of Emiliania huxleyi. Optics Express. 25: 13-. gs :: :: :: doi:10.1364/OE.25.014996

Fournier, R. O. (1971). Chrysocampanula spinifera gen. et sp. nov. (Prymnesiophyceae), a new marine haptophyte from the Bay of Chaleurs, Quebec. Phycologia. 10: 89-92. gs :: :: ::

Frada, M., Not, F., Probert, I. & de Vargas, C. (2006). CaCO3 optical detection with fluorescent in situ hybridization: a new method to identify and quantify calcifying microorganisms from the oceans. Journal of Phycology. 42(1): 1162-1169. gs :: :: :: doi:10.1111/j.1529-8817.2006.00276.x

Frada, M., Percopo, I., Young, J. R., Zingone, A., de Vargas, C. & Probert, I. (2009). First observations of heterococcolithophore-holococcolithophore life cycle combinations in the family Pontosphaeraceae (Calcihaptophycideae, Haptophyta). Marine Micropaleontology. 71(1): 20-27. gs :: :: :: doi:10.1016/j.marmicro.2009.01.001

Frada, M., Probert, I., Allen, M. J., Wilson, W. H. & de Vargas, C. (2008). The “Cheshire Cat” escape strategy of the coccolithophore Emiliania huxleyi in response to viral infection. Proceedings of the National Academy of Sciences, USA. 105(41): 15944-15949. gs :: :: :: doi:10.1073/pnas.0807707105

Frada, M. et al. (2010). A guide to extant coccolithophores (Calcihaptophycidae, Haptophyta) using light microscopy. Journal of Nannoplankton Research. 31(2): 58-112. gs :: :: :: doi:10.58998/jnr2094

Frada, M. J., Bendif, E. M., Keuter, S. & Probert, I (2018). The private life of coccolithophores. Perspectives in Phycology. 6: 11-30. gs :: :: ::

Frada, M. J., Bidle, K. D., Probert, I. & de Vargas, C. (2012). In situ survey of life cycle phases of the coccolithophore Emiliania huxleyi (Haptophyta). Environmental Microbiology. 14(6): 1558-1569. gs :: :: :: doi:10.1111/j.1462-2920.2012.02745.x

Frada, M. J., Keuter, S. & Koplovitz, G. (2024). Phosphate-limiting conditions induce cell volume increase in natural coccolithophore populations. Journal of Nannoplankton Research. 42(S): 49-49. gs :: :: :: doi:10.58998/jnr3227

Frada, M. J., Rosenwasser, S., Ben-Dor, S., Shemi, A., Sabanay, H. & Vardi, A. (2017). Morphological switch to a resistant subpopulation in response to viral infection in the bloom-forming coccolithophore Emiliania huxleyi. PLoS One. 1-17. gs :: :: :: doi:10.1371/journal.ppat.1006775

Frada, M. J. et al. (2014). Zooplankton may serve as transmission vectors for viruses infecting algal blooms in the ocean. Current Biology. 24(21): 2592-2597. gs :: :: :: doi:10.1016/j.cub.2014.09.031. Epub 2014 Oct 23.

Fraguas, A. (2014). Crepidolithus cantabriensis nov. sp., a new calcareous nannofossil (Prymnesiophyceae) from the Lower Jurassic of northern Spain. Geobios. 47: 31-38. gs :: :: :: doi:10.1016/j.geobios.2013.10.004

Fraguas, Á., Comas-Rengifo, M. J., Gómez, J. J. & Goy, A. (2012). The calcareous nannofossil crisis in Northern Spain (Asturias province) linked to the Early Toarcian warming-driven mass extinction. Marine Micropaleontology. 94-95: 58-71. gs :: :: :: doi:10.1016/j.marmicro.2012.06.004

Fraguas, A. & Erba, E. (2010). Biometric analyses as a tool for the differentiation of two coccolith species of the genus Crepidolithus (Pliensbachian, Lower Jurassic) in the Basque-Cantabrian Basin (Northern Spain). Marine Micropaleontology. 77: 125-136. gs :: :: :: doi:10.1016/j.marmicro.2010.08.004

Fraguas, A., Gomez, J. J., Comas-Rengifo, M. J. & Goy, A. (2021a). Pliensbachian calcareous nannofossil paleoecology in the E Rodiles section (Asturias, N Spain): A key location connecting the Boreal and Tethyan realms. Marine Micropaleontology. 163: 1-12. gs :: :: :: doi:10.1016/j.marmicro.2021.101962

Fraguas, Á., Gómez, J. J., Goy, A. & M. J. Comas-Rengifo (2021b). The response of calcareous nannoplankton to the latest Pliensbachian–early Toarcian environmental changes in the Camino Section (Basque Cantabrian Basin, northern Spain). Geological Society of London, Special Publications. 514: 31-58. gs :: :: ::

Fraguas, A. & Young, J. R. (2011). Evolution of the coccolith genus Lotharingius during the Late Pliensbachian - Early Toarcian interval in Asturias (N Spain). Consequences of the Early Toarcian extinction event. Geobios. 44(4): 361-375. gs :: :: :: doi:10.1016/j.geobios.2010.10.005

Fraguas, Ángela, Comas-Rengifo, M. ía José, Goy, A. & Gómez, J. J. (2018). Upper Sinemurian–Pliensbachian calcareous nannofossil biostratigraphy of the E Rodiles section (Asturias, N Spain): a reference section for the connection between the Boreal and Tethyan Realms. Newsletters on Stratigraphy. 51(2): 227-244. gs :: :: ::

Fraguas, Ángela, Comas-Rengifo, M. ía José & Perilli, N. (2015). Calcareous nannofossil biostratigraphy of the Lower Jurassic in the Cantabrian Range (Northern Spain). Newsletters on Stratigraphy. 48(2): 179-199. gs :: :: ::

Fraguas, Ángela, Nieto, L., Molina, J. M. & Reolid, M. (2024). New insights on calcareous nannofossil biostratigraphy and paleoecology around the Pliensbachian/Toarcian boundary in the South Iberian paleomargin. Journal of Nannoplankton Research. 42(S): 50-50. gs :: :: :: doi:10.58998/jnr3228

Franke, W. W. & Brown, R. M. (1971). Scale formation in Chrysophycean Algae III. Negatively stained scales of the coccolithophorid Hymenomonas. Archiv für Mikrobiologie. 77: 12-19. gs :: :: :: doi:10.1007/BF00407984

Franklin, D. C. & Marchant, H. J. (1995). Parmales in sediments of Prydz Bay, East Antarctica: a new biofacies and paleoenvironmental indicator of cold water deposition? Micropaleontology. 41: 89-94. gs :: :: :: doi:10.2307/1485885

Franklin, D. J., Poulton, A. J., Steinke, M., Young, J. R., Peeken, I. & Malin, G. (2009). Dimethylsulphide, DMSP-lyase activity and microplankton community structure inside and outside of the Mauritanian upwelling. Progress in Oceanography. 83(1-4): 134-142. gs :: :: :: doi:10.1016/j.pocean.2009.07.011

Franklin, D. J., Steinke, M., Young, J. R., Probert, I. & Malin, G. (2010). Dimethylsulphoniopropionate (DMSP), DMSP-lyase activities (DLAs) and dimethylsulphide (DMS) in 10 species of coccolithophore. Marine Ecology Progress Series. 410(1): 13-23. gs :: :: :: doi:10.3354/meps08596

Frederiksen, N. O. et al. (1982). Biostratigraphy and paleoecology of Lower Paleozoic, Upper Cretaceous, and Lower Tertiary Rocks in U.S. Geological Survey New Madrid test wells, southeastern Missouri. Tulane Studies in Geology and Paleontology. 17(2): -. gs :: :: O ::

Freeman, N. M. & Lovenduski, N. S. (2015). Decreased calcification in the Southern Ocean over the satellite record. Geophysical Research Letters. 42: 1-7. gs :: :: :: doi:10.1002/2014GL062769

Freitag, M., Beszteri, S., Vogel, H. & John, U. (2011). Effects of physiological shock treatments on toxicity and polyketide synthase gene expression in Prymnesium parvum (Prymnesiophyceae). Phycologia. 46(3): 193-201. gs :: :: :: doi:10.1080/09670262.2011.591438

Frenz, M., Baumann, K. -H., Böckel, B., Höppner, R. & Henrich, R. (2005). Quantification of foraminifer and coccolith carbonate in South Atlantic surface sediments by means of carbonate grain-size distributions. Journal of Sedimentary Research. 75(3): 464-475. gs :: :: :: doi:10.2110/jsr.2005.036

Fresnel, J. (1986). Nouvelles observations sur une Coccolithacée rare: Cruciplacolithus neohelis (McIntyre et Bé) Reinhardt (Prymnesiophyceae). Protistologica. 22(2): 193-204. gs :: :: ::

Fresnel, J. (1989). Les Coccolithophorides (Prymnesiophyceae) du littoral: Genres: Cricosphaera, Pleurochrysis, Cruciplacolithus, Hymenomonas et Ochrosphaera.Ultraestructure, cycle biologique, systenatique. PhD thesis, Caen University. -. gs :: :: ::

Fresnel, J. (1994). A heteromorphic life cycle in two coastal coccolithophorids, Hymenomonas lacuna and Hymenomonas coronata (Prymnesiophyceae). Canadian Journal of Botany. 72: 1455-1462. gs :: :: :: doi:10.1139/b94-179

Fresnel, J. & Billard, C. (1991). Pleurochrysis placolithoides sp. nov. (Prymnesiophiceae), a new marine coccolithophorid with remarks on the status of cricolith-bearing species. British Phycological Journal. 26: 67-80. gs :: :: :: doi:10.1080/00071619100650061

Fresnel, J. & Probert, I. (2005). The ultrastructure and life cycle of the coastal coccolithophorid Ochrosphaera neapolitana (Prymnesiophyceae). European Journal of Phycology. 40(1): 105-122. gs :: :: :: doi:10.1080/09670260400024659

Fresnel, J., Probert, I. & Billard, C. (2001). Prymnesium faveolatum sp. nov. (Prymnesiophyceae), a new toxic species from the Mediterranean Sea. Vie et Milieu. 51: 89-97. gs :: :: ::

Friedinger, P. J. J. & Winter, A. (1987). Distribution of modern coccolithophore assemblages in the Southwest Indian Ocean off Southern Africa. Journal of Micropalaeontology. 6(1): 49-56. gs :: :: :: doi:10.1144/jm.6.1.49

Friedrich, O., Herrle, J. O & Hemleben, C. (2005). Climatic changes in the Late Campanian through Early Maastrichtian: micropaleontological and stable isotopic evidence from an epicontinental sea. Journal of Foraminiferal Research. 35: 228-247. gs :: :: :: https://doi.org/10.2113/35.3.228

Friedrich, O. & Meier, K. J. S. (2006). Suitability of stable oxygen and carbon isotopes of calcareous dinoflagellate cysts for paleoclimatic studies: Evidence from the Campanian/Maastrichtian cooling phase,. Palaeogeography Palaeoclimatology Palaeoecology. 239(3–4): 456-469. gs :: :: :: doi:10.1016/j.palaeo.2006.02.005

Fritz, J. J. (1999). Carbon fixation and coccolith detachment in the coccolithophore Emiliania huxleyi in nitrate-limited cyclostats. Marine Biology. 133: 509-518. gs :: :: :: doi:10.1007/s002270050491

Fritz, J. J. & Balch, W. M. (1996). A light-limited continuous culture study of Emiliania huxleyi: determination of coccolith detachment and its relevance to cell sinking. Journal of Experimental Marine Biology and Ecology. 207(1-2): 127-147. gs :: :: :: doi:10.1016/S0022-0981(96)02633-0

Froelich, S., Sørensen, H. O., Hakim, S. S., Marin, F., Stipp, S. L. S. & Birkedal, H. (2015). Smaller calcite lattice deformation caused by occluded organic material in coccoliths than in mollusk shell. Crystal Growth & Design. 15(6): 2761-2767. gs :: :: :: doi:10.1021/acs.cgd.5b00118

Fromm, A., Schatz, D., Ben-Dor, S., Feldmesser, E. & Vardi, A. (2022). Complete Genome Sequence of Emiliania huxleyi Virus Strain M1, Isolated from an Induced E. huxleyi Bloom in Bergen, Norway. Microbiology resource announcements. 11(5): -. gs :: :: :: doi:10.1128/mra.00071-22. Epub 2022 Apr 19.

Frydas, D. (1986). Plankton-Stratigraphie mariner Sedimente des Neogens von Ost-Kreta (Griechenland) [Planktonic Stratigraphy of marine Sediments of eastern Crete (Greece)]. Newsletters on Stratigraphy. 16(2): 69-83. gs :: :: ::

Frydas, D. (1989). Coccolithen- und Silicoflagellaten-Stratigraphie aus dem Pliozän von NW- und W-Kreta, Griechenland [Coccoliths and Silicoflagellates from the Pliocene of northwest and west Crete, Greece]. Newsletters on Stratigraphy. 20(3): 131-147. gs :: :: ::

Frydas, D. (1990). Plankton-Stratigraphie des Pliozäns und unteren Pleistozäns der SW-Peloponnes, Griechenland [Pliocene and early Pleistocene assemblages of calcareous nannoplankton and planktonic foraminifera of several localities of southwestern Peloponnes, Greece]. Newsletters on Stratigraphy. 23(2): 91-108. gs :: :: ::

Frydas, D. (1996). Silicoflagellate Stratigraphy for Neogene to Quaternary marine sediments in Greece. Newsletters on Stratigraphy. 33(2): 99-116. gs :: :: ::

Frydas, D. (1996). Upper Zanclean silicoflagellates from Milos Island (Cyclades, Greece). Journal of Nannoplankton Research. 18(2): 61-67. gs :: :: :: doi:10.58998/jnr2095

Frydas, D., Hemleben, C. & Bellas, S. M. (2002). Distribution of calcareous nannofossils in the sparopel layers of hole 69-2SL, Meteor cruise 40/4, Eastern Mediterranean Sea. Journal of Nannoplankton Research. 24(3): 203-211. gs :: :: :: doi:10.58998/jnr2096

Fuchs, R. & Stradner, H. (1977). Uber Nannofossilien im Badenien (Mittelmiozan) der zentralen Paratethys. Beitrage zur Paläontologie von Österreichs. 2: 1-58. gs :: :: ::

Fuchs, T. (1894). Tertiaerfossilien aus den kohlefuhrenden Miocaenablagerungen der Umgebung von Krapina und Radoboj und uber die Stellung der sogennanten 'Aquitanischen Stufe'. Min Jb Kung geol Anst. 10: 161-175. gs :: :: ::

Fuchs, T. (1905). Die neueren Untersuchungen über die Natur der Coccolithen. Verhandlungen der Geologischen Bundesanstalt (Wien). 1905: 172-174. gs :: :: ::

Fuchs, W. & Stradner, H. (1967). Die Foraminiferenfauna und Nannoflora eines Bohrkernes aus dem höheren Mittel-Alb der Tiefbohrung DELFT 2 (NAM), Niederlande. Jahrbuch der Geologischen Bundesanstalt. 245-341. gs :: :: ::

Fuertes, M. -A., Flores, J. -A. & Sierro, F. J. (2014). The use of circularly polarized light for biometry, identification and estimation of mass of coccoliths. Marine Micropaleontology. 113: 44-55. gs :: :: :: doi:10.1016/j.marmicro.2014.08.007

Fujita, R. & Jordan, R. W. (2017). Tropical Parmales (Boilidophyceae) assemblages from the Sulu Sea and South China Sea, including the description of five new taxa. Phycologia. 56(5): 499-509. gs :: :: :: doi:10.2216/16-128.1

5255 references have been found, they are presented over 18 pages: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18